
NON-LINEAR ASPECTS

OF

BLACK HOLE PHYSICS

Thesis submitted for the degree of

Doctor of Philosophy (Sc.)

In Physics (Theoretical)

by

Arindam Lala

Department of Physics

University of Calcutta

2015



To
The memory of my uncle

Anup Kumar Lala



Acknowledgments

This thesis is the outcome of the immense efforts that have been paid for the last
four and half years during my stay at Satyendra Nath Bose National Centre for
Basic Sciences, Salt Lake, Kolkata, India. I am happy to express my gratitude to
those people who have constantly supported me from the very first day of my joining
at the S. N. Bose Centre. I would like to covey my sincere thanks to all of them.

First of all, I would like to thank Prof. Rabin Banerjee for giving me this nice
opportunity to work under his supervision. The entire research work that I did for
the last four and half years is based on the platform provided by Prof. Banerjee.

I am indebted to the Council of Scientific and Industrial Research (C.S.I.R.),
Government of India, for providing me financial support under grant no. 09/575
(0086)/2010-EMR-I.

I am also thankful to Dr. Dibakar Roychowdhury, Dr. Sunandan Gangopadhyay,
and Mr. Shirsendu Dey who have actively collaborated with me in various occasions
and helped me to accomplish various projects in different courses of time.

I am specially thankful to Mr. Subhajit Sarkar with whom I have discussed lots
of basic physics as well as condensed matter physics in various occasions. Also, the
discussions with Dr. Samir Kumar Paul and Dr. Debaprasad Maity helped me a
lot in gaining insight into certain physical ideas.

I am glad to thank my senior group members Dr. Bibhas Ranjan Majhi, Dr.
Sujoy Kumar Modak, and Dr. Debraj Roy for some fruitful discussions.

I am particularly thankful to my group mates Dr. Biswajit Paul, Mr. Arpan Kr-
ishna Mitra, and Ms. Arpita Mitra for their active participation in various academic
discussions.

I also thank the organizers of the conference The String Theory Universe, held
during 22-26 September, 2014 at the Johannes Gutenberg University Mainz for
giving me the opportunity to present my work and for providing me an environment
to discuss with people working in the direction of my research.

Finally, I would like to convey my sincere thanks to my family members, espe-
cially to my parents, in-laws, and my wife, for their constant support.

2



List of publications

1. “Ehrenfests scheme and thermodynamic geometry in Born-Infeld AdS black
holes,” Arindam Lala, D. Roychowdhury, Phys. Rev. D 86 (2012) 084027
[arXiv[hep-th:1111.5991]].

2. “Critical phenomena in higher curvature charged AdS black holes,” Arindam
Lala, AHEP Vol. 2013, 918490 (2013) [arXiv[hep-th:1205.6121]].

3. “Holographic s-wave condensate with non-linear electrodynamics: A non-trivial
boundary value problem,” R. Banerjee, S. Gangopadhyay, D. Roychowdhury,
Arindam Lala, Phys. Rev. D 87 (2013) 104001 [arXiv[hep-th:1208.5902]].

4. “Holographic s-wave condensation and Meissner-like effect in Gauss-Bonnet
gravity with various non-linear corrections,” S. Dey, Arindam Lala, Annals
of Physics 354 (2015) 165-182 [arXiv[hep-th:1306.5167]].

5. “Magnetic response of holographic Lifshitz superconductors: Vortex and Droplet
solutions,” Arindam Lala, Phys. Lett. B 735 (2014) 396-401 [arXiv[hep-
th:1404.2774]].

This thesis is based on all the above mentioned papers whose reprints are at-
tached at the end of the thesis.



NON-LINEAR ASPECTS

OF

BLACK HOLE PHYSICS



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Thermodynamic Phase Transition In Born-Infeld-AdS Black Holes 28
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Phase transitions and their classifications in ordinary thermodynamics 30
2.3 Thermodynamic phases of the Born-Infeld AdS black hole . . . . . . 31

2.3.1 Geometric structure of the black hole . . . . . . . . . . . . . . 31
2.3.2 Thermodynamic variables of the black hole . . . . . . . . . . . 32

2.4 Study of phase transition using the Ehrenfest’s scheme . . . . . . . . 36
2.5 Study of phase transition using state space geometry . . . . . . . . . 39
2.6 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Critical Phenomena In Higher Curvature Charged AdS Black
Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Geometric and thermodynamic properties of Lovelock-Born-Infeld-

AdS black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Gravity action and metric structure . . . . . . . . . . . . . . . 45
3.2.2 Thermodynamic quantities . . . . . . . . . . . . . . . . . . . . 48

3.3 Phase structure and stability of third order LBI-AdS black hole . . . 52
3.4 Critical exponents and scaling hypothesis . . . . . . . . . . . . . . . . 59

3.4.1 Critical exponents . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Scaling laws and scaling hypothesis . . . . . . . . . . . . . . . 66
3.4.3 Additional exponents . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Holographic s-wave Superconductors with Born-Infeld Correction 71
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Ingredients to construct holographic superconductors . . . . . . . . . 73
4.3 Critical temperature for condensation . . . . . . . . . . . . . . . . . . 75
4.4 Order parameter for condensation . . . . . . . . . . . . . . . . . . . . 78
4.5 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5



CONTENTS 6

5 Gauge and Gravity Corrections to Holographic Superconductors:
A Comparative Survey . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1 Overview and motivations . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Basic set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 s-wave condensation without magnetic field . . . . . . . . . . . . . . 89
5.4 Magnetic response: Meissner-like effect and critical magnetic field . . 96
5.5 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Holographic Lifshitz Superconductors and Their Magnetic Re-
sponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Lifshitz holographic superconductors: a brief review . . . . . . . . . . 105
6.3 Vortex and droplet solutions in holographic Lifshitz superconductors . 108

6.3.1 Holographic vortex solution . . . . . . . . . . . . . . . . . . . 108
6.3.2 Holographic droplet solution . . . . . . . . . . . . . . . . . . . 112

6.4 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Chapter 1

Introduction

1.1 Overview

We live in a universe surrounded by four types of forces: weak, strong, electro-
magnetic, and gravitational. While there is considerable amount of theoretical and
experimental data that enables us to understand the nature of first three of these
forces, there remains substantial ambiguity in understanding the true nature of the
gravitational force[1]-[3]. Gravity has puzzled scientific community for centuries,
and still it is a rather challenging avenue to make unprecedented expeditions.

In the beginning of the twentieth century, Albert Einstein proposed a new the-
ory, the Special Theory of Relativity, which changed the age-old notion of space and
time. Alike Newtonian mechanics, special relativity also depicts the structure of
space-time, but the inconsistency of Newtonian mechanics with the Maxwell’s elec-
tromagnetism was removed in the latter. Nevertheless, there is an apparent subtlety
in the formulation of special relativity, it is a theory formulated entirely in inertial
(i.e. non-accelerating) frames of references and it involves flat space-times having
no curvature and hence there is no gravity.

The notion of gravity can easily be procured by shifting to the General Theory
of Relativity (henceforth GTR). In this framework, gravity emerges quite naturally
from the curvature of space-time which indeed implies that gravity is inherent to
space-time. The core idea of GTR is encoded in the principle of equivalence which
states that, the motion of freely falling particles are the same in a gravitational
field and a uniformly accelerated frame in small enough regions of space-time. In
this region, it is impossible to detect the existence of gravitational filed by means
of local experiments[1]. Mathematically, the curvature of space-time is described
by the metric tensor. The metric tensor encapsulates all the geometric and causal
structure of space-time. In the classical GTR the dynamics of metric in the presence
of matter fields is described by the celebrated Einstein’s equations. These equations
in fact relate the curvature of space-time with energy of matter fields[1].

The most fascinating thing about GTR is that it is not only a theory of gravity.
There are more than that. This theory has been verified with success through ex-
periments. On the other hand, with the thrill to understand Nature, many dazzling

7



1.1. Overview 8

theories such as String Theory[4], the Standard Model of particle physics[2], etc.
have been proposed. While each one of them deserves appreciation in their own
right, there are close connections among GTR and these theories. As a matter of
fact, classical GTR is an indispensable tool to explain many of the features of these
theories. Despite the tremendous successes of GTR, a genuine quantum theory of
gravity is still missing. This makes gravity more enigmatic than other forces of Na-
ture, although with the advancement of our knowledge even more exciting features
are expected to be disclosed in the future.

There are several useful applications of GTR such as, black holes, the early
universe, gravitational waves, etc. While these fall into the regime of high energy
physics and astrophysics, it is worth mentioning that GTR is being profoundly
applied in modern technology, such as the Global Positioning System (GPS), and
many more. However, this thesis is solely devoted to the study of several crucial
aspects of black hole physics which are one of the striking outcomes of the solutions
of the Einstein’s equations[1].

Black holes are usually formed from the gravitational collapse of dying stars. Due
to the immense gravitational pull, no information can escape from within a black
hole while information can enter into it. A black hole is characterized by at least
one gravitational trapping surface, known as the event horizon, surrounding the re-
gion of intense gravitational field. Moreover, there exists a singularity of space-time
within the event horizon, guaranteed by the Hawking-Penrose singularity theorem,
which arises from the geodesic incompleteness of space-time[1]. Over the past sev-
eral decades, different types of black hole solutions have been formulated. All these
solutions are obtained from Einstein’s equations which in turn are formulated from
very specific actions through the use of the least action principle[1]. In accordance
with no-hair theorems, there exist restricted number of stationary black hole so-
lutions characterized by a small number of microscopic parameters such as, mass,
charge, angular momentum, and no other free parameters. It should be emphasized
that, all the facts discussed in this paragraph are in fact classical pictures of black
holes.

It is to be noted that, the Einstein tensor, Gµν = Rµν− 1
2
Rgµν , is the most general

tensor in (3+1)-dimensions which has second derivatives in the metric tensor, gµν [1].
In an attempt to generalize the Einstein tensor in higher dimensions (i.e., greater
than 4), D. Lovelock proposed a generalized version of this tensor[5]. This is the
most general second rank tensor with vanishing divergence and is constructed out of
second derivatives of the metric tensor. Notably, the Lovelock tensor is non-linear
in the Riemann tensor and differs from the Einstein tensor only if the space-time
has more than four dimensions. Since it contains only second derivatives of the
metric, the quantization of the linearized Lovelock theory is free of ghosts[5]-[7]. A
few motivations for studying such non-linear theories can be mentioned as follows:

• The inherent property of the Einstein tensor and the Einstein-Hilbert La-
grangian of containing only upto second derivatives of the metric tensor leaves
a scope to immediately generalize them by including non-linear, higher cur-
vature terms in the Lagrangian while keeping the above mentioned property
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of these two quantities intact. As a matter of fact, this generalization can be
performed upto any order, and the resulting Lagrangian is indeed a higher
derivative Lagrangian[8].

• When the curvature of space-time is very large, e.g., in the very early universe
with distances of the order of Planck’s length, Einstein’s theory is not well
defined. In such circumstances non-linear gravity theories are conjectured to
be appropriate for describing gravity[8]-[9].

• It is well known that, Einstein’s theory, as a candidate for quantum theory
of gravity, suffers from non-renormalizability problem. In an attempt to re-
store renormalizability, it was shown that the Einstein-Hilbert action should
be supplemented with higher curvature terms[10]-[13]. However, there remains
a caveat in this prescription, namely, the theory becomes non-unitary in the
usual perturbation theory framework which forbids the higher curvature grav-
ity theories to be considered as suitable candidates for quantum gravity[14].

• Indications for considering higher curvature terms also came from the small
slope expansion of string theory models[15]. There it was argued that higher
curvature terms, such as R2 or RµνR

µν , could appear in the effective La-
grangian if the slope expansion of the low energy field theory limit, upto terms
with two space-time derivatives, were considered. Later on Zwiebach[16] and
Zumino[17] pointed out the compatibility between the curvature squared terms
and the absence of ghost particles in the low energy limits of string theories.

The Lovelock Lagrangian density containing higher curvature correction terms in
D-dimensions is given by[5, 6, 7],

L =
N∑
k=0

αkλ
2(k−1)Lk, (1.1)

where N =
D − 2

2
and N =

D − 1

2
for even D and odd D, respectively. αk and λ

are coupling constants with units of area and length, respectively. The constant α
introduces a length scale lα ∼

√
α which represents a short distance scale where the

Einstein gravity turns out to be corrected[6].1 2

In the above equation

Lk =
1

2k
√
−g δi1···i2kj1···j2k R

j1j2
i1i2
· · ·Rj2k−1j2k

i2k−1i2k
(1.2)

is the Euler density of order 2k, and all other quantities have usual meaning[19].
The term L0 is the usual cosmological term, L1 is the Einstein-Hilbert Lagrangian,
L2 is the Lanczos Lagrangian, and so on.

1From string theory perspective, α is proportional to the square of the string length scale,
α′ ∼ `2s[6].

2The higher curvature terms in the bulk are naturally generated from α′ corrections on string
world-sheet [18].
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The Einstein’s equations of GTR suggest that the presence of matter indeed plays
an important role to generate curvature of space-time which in turn is manifested as
the force of gravity. Mathematically, this leads to the addition of matter fields in the
Einstein-Hilbert action[1]. With this addition, the Einstein tensor becomes propor-
tional to the energy-momentum tensor (Tµν) corresponding to the additional matter
fields in the action: Gµν ∝ Tµν . Generally speaking, the presence of matter fields is
manifested as non-zero electromagnetic fields associated with the solutions which in
turn act as a source of the energy-momentum tensor. In the context of gravity, one
of the most important examples of coupling of matter fields with gravity that has
been explored widely in the literature is the Maxwell electromagnetic fields. With
this construction, the field equations are both Einstein’s equations and Maxwell’s
equations where these two sets of equation are coupled together. This is admirable
since the Maxwell electromagnetic field strength tensor (Fµν) enters Einstein’s equa-
tion through Tµν , while the metric tensor (gµν) enters into the Maxwell’s equations
explicitly[1]. The gravity solution corresponding to this particular example is known
as the Reissner-Nordström solution[1]. Interestingly, the form of the matter field is
not restricted to the Maxwell field. There are variety of matter fields that have been
studied in the context of gravity, such as the scalar fields (φ), tensor fields (Bµν),
power Maxwell fields ((FabF

ab)q, q > 1), dilaton fields (ϕ), and so on. Along with
higher derivative corrections to the gravity action (higher curvature corrections), it
has been a crucial issue to study the effects of higher derivative corrections to the
matter fields, especially of gauge fields in the usual Maxwell electrodynamics[20], in
the gravity action. As a matter of fact, these corrections emerge in the low-energy
effective action of string theory[21, 22].

For the past several years, constructing gravity theories in the presence of higher
derivative corrections to the Maxwell action has been a popular research direction
[23]-[33]. From these studies several intriguing features of gravity solutions have been
emerged. Among them regular black hole solutions[23], validation of the zeroth and
first law of black hole mechanics[24], interesting black hole and brane solutions[27]-
[33], etc., may be mentioned. These higher derivative corrections may be viewed
as non-linear corrections to the usual Maxwell electrodynamics. Among these non-
linear theories of electrodynamics, the Born-Infeld (BI) theory has earned repeated
attention for the past few decades. The non-linear BI theory was proposed in order
to remove the infinite self-energy associated with a point-like particle in the Maxwell
electrodynamics[20]. However, due to the emergence of quantum electrodynamics
(QED), which could remove this divergence in self-energy in an effective way by
the method of renormalization[34], the importance of the BI theory was lessened.
But, since the discovery of the string theory and the D-brane theory it has been
revived significantly[21, 22, 25, 35]. The regularity of electric field in the BI theory
leads to non-singular solutions of the field equations[23]. In addition, BI theory
is the only non-linear theory of electrodynamics with sensible weak field limit[22].
Also, it remains invariant under electromagnetic duality[25]-[26]. Among other non-
linear theories of electrodynamics, BI theory can be distinguished by some unique
properties like, absence of shock waves and birefringence phenomena[36]. Perhaps
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the most interesting and elegant regime for the application of the BI theory is the
string theory. The BI theory effectively describes the low-energy behavior of the
D-branes, which are nonperturbative solitonic objects in string theory[22]. Impor-
tantly, the dynamics of electromagnetic fields on D-branes are governed by the BI
Lagrangian[35]. In string theory open strings end on D-branes and the end points
are considered as point charges. These end points must not have infinite self-energy
for a physically sensible theory making higher derivative BI corrections obvious[35].
Since, string theory requires the inclusion of gravity for its consistency, it is quite
obvious to connect non-linear theories of electrodynamics with gravity.

It is to be noted that, two new types of Born-Infeld-like NEDs have been proposed
recently, namely the exponential non-linear electrodynamics (ENE) and the logarith-
mic non-linear electrodynamics (LNE), in the context of static charged asymptotic
black holes[37, 38, 39]. The matter actions with ENE and LNE also yield higher
derivative corrections to the usual Maxwell action. Moreover, they retain several
important properties of the Born-Infeld electrodynamics[38]-[40].

Apart from being an important ingredient for describing several aspects of theo-
retical physics, the non-linear theories of electrodynamics also bear significance from
cosmological physics points of view. There are several examples in this regard. A
few of them are the followings: (i) the early universe inflation may be explained
with non-linear electrodynamics[41], (ii) the effects of non-linear electrodynamics
become significant in the studies of pulsars, neutron stars, magnetars, and strange
quark magneters [42, 43], (iii) inclusion of these theories into the photon dynamics
leads to the dependence of gravitational red shift of strongly magnetized compact
objects on the background magnetic field. This is due to the affect of these non-linear
theories on the mass-radius ratio of the mentioned objects[43].

Although, gravity theories in (3+1)-dimensions are undoubtedly interesting and
rich in structure, there are no reasons for not considering gravity theories in higher
dimensions (i.e., more than four dimensions). First of all, from the mathematical
structure of the Lovelock theory it is evident that in formulating generalized gravity
theories (i.e., theories with higher curvature corrections) we must consider higher
dimensions. On top of that, there are several other reasons which have accelerated
the studies of gravity theories in higher dimensions, a few among them may be
highlighted in the following points:

• Gravity is the manifestation of space-time geometry. Thus, from philosophical
points of view, it is quite natural to ask what will be the nature of gravity if
space-time possesses more than the conventional four dimensions.

• From the works of Kaluza and Klein it was evident that small extra-dimensions
could be curled up within the perceived four dimensions in which we live[44].

• In string theory, which is a strong candidate for a quantum theory of gravity,
higher dimensions emerges naturally as theoretical necessity[35]. Moreover,
the study of microscopic theories of black holes leads to the consideration of
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higher dimensions. This is reassured by the fact that the microscopic counting
of black hole entropy was first performed in a five dimensional black hole[45].

• Through the mathematical construction of “brane theory” it is observed that
a (3 + 1)-dimensional brane, that describes our world, is in fact immersed in
higher dimensional space[46].

• Black holes in higher dimensions possess many interesting features such as,
possibility of rotation in several independent planes[47], presence of black sat-
urns, black rings with horizon topology changing transitions[48], absence of
spherical horizon topology[49], absence of stability in spinning black holes[50],
and many others3 which differ substantially from the four dimensional black
holes. At the least, there is an intriguing possibility to check the validity of the
known features of black holes, like uniqueness, laws of black hole mechanics,
etc. in higher dimensions[51].

It is believed that, the study of GTR in higher dimensions may provide useful
insight into the true nature of gravity which in turn may play an important role in
the development of a quantum theory of gravity.

During the last four decades, considerable amount of research have been per-
formed in the theory of black holes in the framework of GR. One of the main goals
of these studies is to unravel the basic properties of black holes. Surprisingly, it has
been observed that there is a fundamental relationship between the laws of black hole
mechanics and the laws of ordinary thermodynamics. Subsequently, the successes of
the thermodynamic descriptions of black holes in describing certain aspects of the
quantum nature of strong gravitational fields have induced substantial amount of
optimism to understand quantum nature of gravity.

The study of black hole thermodynamics was initiated in the early seventies,
motivated by the similarity between the non-decreasing nature of black hole area
and that of the conventional thermodynamic entropy. Starting with the seminal
works of S. W. Hawking[52] and J. Bekenstein[53] series of works were pursued
thereafter in this direction[54]-[58]. The close analogy between the laws of black hole
mechanics and that of thermodynamics was first explicitly pointed out in Ref.[59]
in the context of stationary, axisymmetric black hole solutions. There, based on
some symmetry properties and energy conditions of the space-time, the following
four laws were derived:

1. Zeroth law: “The surface gravity, κ of a black hole is constant over the event
horizon.”

2. First law: The change in black hole parameters (mass M , horizon area A,
angular momentum JH , and charge Q) are connected by the relation

δM =
κ

8π
δA+ ΩHδJH − ΦHδQ (1.3)

3See Ref.[51] for an interesting review.
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where ΩH and ΦH are the angular velocity and electrostatic potential of the
black hole defined on the horizon.

3. Second law: The area, A of the event horizon of a black hole is non-decreasing
in time[52]:

δA ≥ 0. (1.4)

4. Third law: It is impossible to reduce κ to zero by any finite sequence of
operations.

The mathematical form of the first law given above has a striking similarity
with the first law of ordinary thermodynamics[60] which states that the difference
in energy (E), entropy (S) and any other state variables of two nearby equilibrium
thermodynamic states are related as follow:

δE = TδS + “relevant work terms”. (1.5)

A naive comparison between (1.3) and (1.5) leads to the following mapping between
the black hole parameters and conventional thermodynamic variables:

E ↔M, T ↔ κ

2π
, S ↔ A

4
.

Despite its success, this thermodynamical analogy of black holes was suspected.
It continued to remain a mere mathematical construction without any physical
meaning owing to the fact that classical black holes do not radiate at all. After
all, the mapping T dS ↔ κdA

8π
does not give us any clue how to separately normalize

S/A or T/κ[1]. It was only after the discovery by S. W. Hawking that, due to quan-
tum mechanical particle creation, black holes are capable of radiating all possible
species of particles whose thermal spectrum resembles that of a perfect black body
with a temperature

T =
κ

2π
,

the quantities A/4 and κ/2π could be interpreted as the physical entropy4 and tem-
perature of the black holes, respectively[55]. Thus, black holes can be considered
as thermodynamic objects once quantum mechanical effects are taken into account.
This so called semi-classical approach allows one to inspect into several thermody-
namic aspects of black holes which include phase transition, critical phenomena,
black hole evaporation, and so on.

Having identified black holes as thermodynamic objects with definite tempera-
ture and entropy, it is quite natural to look for whether they possess similar thermo-
dynamic properties as conventional thermodynamic systems. Following this proposi-
tion, an extensive amount of research have been performed in this direction[69]-[123].
Among these, it is the black hole phase transition phenomena that has attracted
researchers most over the years. There are some general motivations to study phase
transitions in black holes, a few of which may be stated as follows:

4Entropy of black holes can also be calculated by following the methods prescribed in Refs.
[61]-[68].
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• It plays an important role to exploit thermodynamic phases of black holes as
well as to understand the behaviors of the thermodynamic variables of interest.
One can determine the orders of phase transitions and analyze the stability of
black holes. Also, critical behavior of black holes as thermodynamic objects
can be studied.

• It has been observed that, phase transitions in black holes may play an impor-
tant role in order to understand the statistical origin of black hole entropy.

• As was shown by E. Witten, certain types of black hole phase transitions can be
interpreted as confinement-deconfinement transitions of quark-gluon plasma
in the context of gauge theories[80]. This opens up a promising direction to
directly apply the theory of black holes in the studies of other fields.

• As will be discussed latter, phase transitions in black holes in bulk space-
times are useful to study certain field theories on the boundary of the bulk via
gauge/gravity dualities.5

From mid 70’s till date, fascinated by the thermodynamic description of black
holes, an enormous amount of effort has been given to study phase transitions in
black holes. This study was started with the Schwarzschild black holes in asymptot-
ically flat space-time[69, 70]. A Schwarzschild black hole is the unique, spherically
symmetric, uncharged solution of vacuum Einstein equation[1]. By analytically con-
tinuing the black hole metric in the Euclidean sector, its Hawking temperature (TH)
can be easily determined[78] which comes out to be inversely proportional to the
mass of the black hole (M). In studying the phase transitions, a unique scenario
was imagined where the black hole was surrounded by thermal radiation. It was
found that, in the flat space-time, the Schwarzschild black hole could be in thermal
equilibrium with the thermal radiation at some temperature T = TH . But this
model has a serious flaw. The specific heat at constant volume is found to be neg-
ative which implies that the black hole is thermodynamically unstable. If we add
additional mass to the black hole which is initially in thermal equilibrium with the
thermal radiation, its temperature will go down and the rate of absorption will be
more than the rate of emission. As a result the black hole will cool down and will
continue to grow indefinitely. Alternatively, a small positive temperature fluctua-
tion will decrease its mass and the temperature would be increased subsequently
until all the mass radiates out. The above discussion points out the fact that, a
canonical ensemble is ill-defined for a Schwarzschild black hole in asymptotically
flat space-time. Latter on it was observed that due to the discontinuities in specific
heats charged and rotating black holes might undergo phase transitions[71].

In an early attempt to obtain thermodynamic stability of Schwarzschild black
holes, Hawking proposed a model in which a Schwarzschild black hole was contained
in a box of finite volume and positive specific heat[57, 70]. It was observed that, the

5The present thesis discusses the first and the last of the above points in considerable details
with several relevant examples.
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black hole could be in stable thermal equilibrium with the radiation provided ER <
M
4

, where ER is the radiation energy of the box. This model, although unphysical,
hid within its construction a clue to inspect into a more physical space-time geometry
with boundary into which the thermodynamic stability of the Schwarzschild black
hole could be found. Following this, gravitational theories were constructed in space-
times having boundaries and hence finite spatial extension[72]-[76]. Interestingly, it
was found that for a finite temperature at the spatial boundary the heat capacity
of the black hole is positive. The space-times that are devoid of asymptotic flatness
and have asymptotic curvature are those which admit a cosmological constant (Λ)
in their geometry[1].

While for an asymptotically flat space-time Λ = 0, a space-time with nonvanish-
ing Λ can be further classified into asymptotically de-Sitter (dS) and asymptotically
anti de-Sitter (AdS) space-times. An asymptotically dS space-time admits Λ > 0
and has positive curvature. On the other hand, for an asymptotically AdS space-
time Λ < 0 and it is negatively curved. Thermodynamics of black holes have been
studied in both dS and AdS space-times. Interesting phase structures of black holes
have been observed in both cases. On top of that, the subtlety that arises for black
holes in asymptotically flat space-times has been successfully removed in considering
these space-times[77, 78]. Let us give a brief overview of thermodynamics of black
holes in AdS space-times in the following few sections.

Anti de-Sitter space has no natural temperature associated with it (similar to
flat space but unlike dS space). This implies that the most symmetric vacuum state
is not periodic in imaginary time although, it may be periodic in real time[78]. In an
AdS space the gravitational potential relative to any origin increases as one moves
away from the origin. Thus, the locally measured temperature of any thermal state
decreases and the thermal radiation of massive particles remains confined near the
black hole and they cannot escape to infinity. Although, zero rest mass particles can
escape to infinity but the incoming and outgoing fluxes of such particles are equal
at infinity. All these facts indicate that the AdS space behaves as a confining box,
and there is no problem at all in considering a canonical ensemble description for
black holes at any temperature[78].

Thermodynamics of black holes in AdS space-time differ substantially from their
flat, non-AdS counterpart[78]-[123]. For example, unlike Schwarschild black holes in
flat space, the temperature of Schwarzschild AdS black holes (henceforth SAdS) no
longer decrease monotonically with mass. According to Ref. [78], there exits a phase
transition, the Hawking-Page transition (henceforth HP), between the thermal AdS
and SAdS in four dimensions. When the temperature of the thermal radiation is less
than a minimum temperature T0 black holes cannot exist and the space is dominated
by radiation. When the temperature is greater than T0 but less than a temperature
T1 there are two black hole solutions at equilibrium with the radiation. There exists
a critical value of mass, M0, for the black hole below which it has negative specific
heat leading to instability of the lower mass black hole. Hence, the lower mass
black hole may either decay into thermal radiation or to a higher mass black hole
(M > M0) with a positive heat capacity corresponding to a stable configuration. At
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T1 the free energy of the system changes sign and for T1 < T < T2 the black hole
is thermodynamically favored over pure radiation. When T > T2, all the thermal
radiation collapse and the space is dominated by black holes. Motivated by the
aforementioned elegance of AdS black holes, there has been a spate of papers in the
literature[77]-[123] where several crucial aspects of these black holes have been stud-
ied over the years. In recent times, with the advancement of supersymmetric gauge
and gravity theories and sting theory, especially of gauge/gravity correspondence,
renewed attention has been paid in the study of black holes in AdS space[80]-[86].

Acceptance of the possible identification of black holes as thermodynamical sys-
tems has been evolved unanimously over the years. However, a completely different
scheme to study phase transition and stability of black holes has been implemented
very recently by R. Banerjee et. al.[115, 116] based on the familiar Ehrenfest’s
equations of standard thermodynamics[60]. The primary motivation that led to
this investigation was to quantitatively describe the infinite discontinuities in the
specific heats of black holes and to determine the order of thermodynamic phase
transitions in black holes[115, 116]. It may be mentioned that, although, an infinite
discontinuity in specific heat is the signature of a second order phase transition, it
is not a sufficient condition to correctly identify the true order of the phase tran-
sition. In this circumstances, the Ehrenfest’s equations of thermodynamics come
into rescue[60]. For a second order phase transition, Ehrenfest’s equations are si-
multaneously satisfied at the critical point(s). Even though the transition is not
a genuine second order, its deviation from second order can be calculated via the
Prigogine-Defay ratio, Π[60, 115]. Using this analytic scheme the nature of phase
transitions in various conventional thermodynamic systems have been explored[124]-
[128]. Not surprisingly, in applying the Ehrenfest’s scheme in black hole thermody-
namics all the relevant thermodynamic variables have been appropriately tailored
in accordance with the laws of black hole mechanics mentioned earlier[59]. Using
this analytic scheme, it has been possible to correctly classify the phase transitions
in black holes[115]-[120]. Following this line of analysis, phase transition and stabil-
ity of Kerr-AdS black[116] holes and charged Reissner-Nordström-AdS (henceforth
RNAdS) have been discussed in Refs.[117]-[120].

Although, the Ehrenfest’s scheme for black hole thermodynamics has been proven
to be successful in clarifying the long-standing debates regarding the true order of
phase transition, it consisted of a shortcoming. In Refs.[115]-[117], the authors
computed both the Ehrenfest’s equations close to the critical point(s) by means of
numerical techniques. A true analytic method to check the validity of the Ehrenfest’s
equations at the critical point(s) was lacking. In an attempt to achieve this goal,
an analytic technique has been developed subsequently, and based on this method
we have been able to analytically calculate the mentioned equations exactly at the
critical points, thereby determining the true order of black hole phase transitions
which comes out to be of second order[119, 120].

In continuation of the preceding discussions, it is worth mentioning that, an al-
ternative approach to describe thermodynamic systems in the framework of Rieman-
nian geometry was proposed by G. Ruppeiner[129]-[135]. There it was shown that
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thermodynamic systems could be represented by Riemannian manifolds once the
theory of statistical fluctuation was included in the axioms of thermodynamics. In
fact, it has been observed that aspects of thermodynamics and statistical mechanics
of the system is encoded in the state-space metric [136]-[149]. The Riemann curva-
ture of the manifold, which is derived from the state-space metric coefficients [129]-
[135],[148], is associated with the interaction of thermodynamic states of the system
[133]. These metric coefficients are in turn calculated from the Hessian of the ther-
modynamic entropy of the system and gives the pair correlation function[130, 131].
On the other hand, the exponential of the Ruppeiner metric gives the probabil-
ity distribution of fluctuations around the maximum entropy state[130]-[149]. For
ordinary thermodynamic systems, the absolute value of the Ricci scalar, |R|, is pro-
portional to the correlation volume ξd (where ξ is the correlation length and d is the
spatial dimension of the system). In the similar spirit, |R| is interpreted as the aver-
age number of correlated ‘Planck areas’ on the event horizon[133]. While vanishing
R implies that these areas are fluctuating independent of each other, a diverging |R|
implies highly correlated pixels indicating a phase transition[133]. Moreover, these
divergences in |R| is associated with the divergences of heat capacities and hence
with the change of phases of the black holes[133].
One of the intriguing features of the Ehrenfest’s scheme of phase transitions in black
holes is that it is very much consistent with the Ruppeiner’s thermodynamic state-
space approach. It is reassured by the fact that the critical points of phase transition,
where specific heats of black holes diverge, obtained in the previous approach, are
exactly the point(s) where |R| diverges, which is a characterizing feature of the
latter[120].

In the theory of phase transitions in conventional thermodynamic systems, it is
a common practice to study the behavior of the given system in the neighborhood
of the critical point(s). This behavior is marked by the fact that various physical
quantities that characterize the system exhibit singularities at the critical point(s).
In fact, the divergence of the correlation length (ξ) of the system is manifested as
the divergences of these quantities. The precise motivation of the theory of critical
phenomena is to express these singularities in the form of power laws, characterized
by a set of indices, known as the static critical exponents, that determine the critical
behavior of the given system quantitatively[150]. These exponents are different
from the dynamic critical exponents which characterize the diverging correlation
length for non-equilibrium thermodynamic systems. It is found that, as ξ → ∞,
correlations extend over the macroscopic distances in the system. As a result, two
different systems with different microscopic structures can no longer be differentiated
from each other leading to a universal behavior of the systems[150]. In a second
order phase transition the critical exponents are found to be universal for they do
not depend upon the microscopic interactions present in the systems. It must be
noted that, these exponents are not independent of each other, they are related
to each other by the static scaling laws[151, 152]. Since black holes behave as
thermodynamic systems, it is quite natural to study the qualitative behavior of
the black holes via the critical phenomena and determine the critical exponents
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associated with the thermodynamic quantities pertaining to the black holes.
An exquisite attempt to determine the critical exponents for charged rotat-

ing black holes was made in Refs.[153]-[156], and the validity of the static scal-
ing laws was checked explicitly for the same[155]. Also, critical phenomena in
Reissner-Nordström black hole in asymptotically flat space-time was studied in
Ref[157]. Thereafter, the critical phenomena in black holes has been explored at
length in the literature[158]-[169]. Particularly, considering the growing successes
of the AdS/CFT correspondence, the study of the critical phenomena has been ex-
tended to include black holes in AdS space-time[146, 147, 163, 164],[165]-[169]. In
fact, from these studies, it has been observed that the theory of critical phenomena
may shed light on several aspects of the duality. Moreover, these studies conclude
that some black holes (such as R-charge black holes) obey the theory of critical
phenomena in condensed matter physics[164].

Recently, interests in the study of black holes in AdS space-time is continuously
growing in the context of the AdS/CFT duality (also called gauge/gravity duality,
holographic duality, gauge/string duality)[170]-[175]. In this duality, it has been
conjectured that certain aspects of quantum field theories (henceforth QFT) living
on the boundaries of bulk AdS space-times can be realized by studying properties
of black holes in the bulk AdS. Expressing in a precise language, this duality relates
QFT and gravity: the quantum physics of strongly correlated many body systems
is dual to the classical gravity in one higher dimension. In the original formulation,
this duality related a four-dimensional conformal field theory (henceforth CFT), a
scale invariant QFT, with type IIB string theory in ten-dimensions[170]. The precise
statement is

d = 4, N = 4, SU(N) Super Yang-Mills (SYM) theory at large N

≡ Type IIB superstring theory in AdS5 × S5.

It should be mentioned that, QFTs at strong coupling are extremely difficult to com-
pute. It has been observed that the conventional perturbative methods are no longer
reliable in analyzing strongly coupled systems. On the other hand, for strongly cou-
pled quantum systems new weakly coupled dynamical degrees of freedom (d.o.f)
emerge and the collective properties of these systems are well described by the fields
associated with these d.o.f. The holographic duality is precisely an example of such
a duality where these emergent fields live in a space with one extra dimension and
the dual theory is a gravity theory. Surprising enough, this additional ‘holographic
dimension’ is the manifestation of the energy scale of the quantum system under
consideration[175].

Actually, the presence of such a duality was conceptualized earlier. In 1974 G.
’t Hooft showed that, in the large N limit of the U(N) color gauge group, with
g2N fixed (g: U(N) coupling constant, N : number of color charges), the gauge
theory could be considered as a theory of strings[176].6 Subsequently, it was found
that the algebra of three dimensional AdS space could be identified as the Virasoro

6In fact, the large N corrections resemble the gs corrections in perturbative string theory.
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algebra[177]. Also, Witten proposed that the phase transitions between thermal AdS
and AdS black holes might be realized as the confinement/deconfinement transitions
of quark-gluon plasma in the context of boundary conformal gauge theories[80].

It is noteworthy that, there exists many such dualities among physical theories,
such as, QFT/QFT duality, string/string duality etc. Nevertheless, the AdS/CFT
duality, an example of QFT/string duality, is much more useful from practical view-
point, since, in constructing a quantum theory of gravity this duality allows us to
reduce it to the problem of constructing a QFT[178, 179].

Although, the AdS/CFT duality was formulated in order to obtain better un-
derstanding of strongly correlated gauge theories, it is no longer restricted to the
same. For example, it has been applied to determine of conserved quantities associ-
ated with a given space-time. This method is commonly known as the counterterm
method [180]-[182]. This is a well known technique which removes the divergences in
the action and conserved quantities of the associated space-time. These divergences
appear when one tries to add surface terms to the action in order to make it well-
defined. The counterterm method was applied earlier for the computation of certain
conserved quantities associated with Kerr, Kerr-AdS space-times, and in the case
of Lovelock gravity, dimensionally continued gravity as well[180]-[182]. On top of
that, it has been observed that several crucial aspects of certain non-gravitational,
strongly interacting physical systems can also be explained by using this duality as
a theoretical tool. Perhaps the most important and pioneering example, that has
helped achieving consistency between string theory and experiment, is the ‘almost
correct’ estimation of the shear viscosity/entropy ratio (η/s) of the strongly interact-
ing quark-gluon plasma (QGP), observed in the high energy collision experiment at
RHIC, by the theoretical calculations using AdS/CFT correspondence[183]-[185].7

Spurred by this accomplishment, several condensed matter systems have been stud-
ied under the framework of this duality. To mention a few, the theory of Hall
effect and Nernst effect have been theorized in the context of dyonic black holes
with the help of the AdS/CFT correspondence[187, 188]. An elaborated discus-
sion on the connection between condensed matter physics and AdS/CFT can be
found in Ref.[189]. These analyses revealed the fact that certain interesting proper-
ties (such as, thermal and electrical conductivities, and other transport coefficients)
of strongly coupled, non-gravitational systems could be obtained by perturbing the
black hole in the AdS space[185]. This holographic conjecture also found to be useful
to obtain a correspondence between fluid dynamics and gravitational physics[190].
On the other hand, the contemporary discovery of spontaneous symmetry break-
ing and phase transition in AdS black holes by S. Gubser[191, 192] brought into
focus the possibility of applying the duality further to quantify several properties of
non-gravitational systems via the AdS/CFT duality.

One of the non-gravitational, condensed matter phenomena that has been studied
extensively under the framework of AdS/CFT duality for the last ten years is the
theory of high-Tc superconductivity[193]-[197]. But, before providing details about

7However, this bound is violated once higher curvature Gauss-Bonnet corrections are taken into
account[186].
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these holographic superconductors, let us make a historical review on the phenomena
of superconductivity. This will help us develop a clear idea in building up the models
of holographic superconductors in our subsequent discussions.

In 1911, H. K. Onnes first discovered the phenomena of superconductivity, namely,
the electrical resistivity of most metals (e.g. mercury) drops abruptly to zero below
a certain critical temperature[198]. Afterwards, it was observed that these super-
conducting materials also possess uncommon properties like, the persistence current
and the complete expulsion of external magnetic field thereby making the material
completely diamagnetic (known as the Meissner effect)[199]. Based on the Maxwell’s
theory of electromagnetism, in 1935, London brothers attempted to explain this phe-
nomena quantitatively. They showed that an external magnetic field indeed decays
inside a superconductor[200].

Latter on in 1950, a phenomenological model of superconductivity was put for-
ward by Ginzburg and Landau[201]. They explained it in terms of a second order
phase transition where a complex scalar field, φ, was introduced as the phenomeno-
logical order parameter. By analyzing the contribution of φ to the free energy of the
system they noted that for temperatures (T ) below the critical value, Tc, the order
parameter becomes non-vanishing and a superconducting phase appears, whereas,
for T > Tc the order parameter vanishes and the normal conducting phase reap-
pears. Notably, from particle physics point of view, this is quite similar to the
Higgs mechanism which is associated with the spontaneous U(1) gauge symmetry
breaking[34].

In search for a complete microscopic theory, Bardeen, Cooper and Schrieffer pro-
posed a new theory — the much known BCS theory of superconductivity[202]. By
explicit field theoretic computations they showed that two opposite spin-1/2 elec-
trons can interact with the phonons (the quanta of lattice vibrations) in such a way
so as to form charged boson known as the Cooper pair. Moreover, below a critical
temperature Tc, there is a second order phase transition and these bosons form a
charged superconducting condensate[202]. Subsequently, based on this mechanism,
properties of conventional superconductors were addressed successfully[203]. But in
1986, a new class of superconducting material was discovered with higher value of
the critical temperature Tc. They were cuprate superconductors, and the supercon-
ductivity was along the CuO2 plane[204]. However, the presence of these high-Tc
superconductors was substantiated by the discovery of iron-pnictide superconductors
in which the superconductivity is also found to be associated with two-dimensional
planes[205]. Unfortunately, the mechanism of superconductivity in these high-Tc
materials cannot be explained by the conventional BCS theory owing to the fact
that, unlike the BCS theory, it involves strong coupling and the notion of Cooper
pair may not even exist[195].

Till date, there is no satisfactory model that may explain the underlying mech-
anism of high-Tc superconductivity (although it is still believed that there might be
a Cooper pair-like pairing mechanism driving the superconductivity). But, due to
the presence of strongly interacting effective degrees of freedom in these materials
AdS/CFT duality may bring upon some hope in this direction, since one of the aims
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of this dual gravity formulation is to explain strongly coupled field theories[170, 183].
The core idea of holographic superconductivity was originated from the work of

S. Gubser[191, 192]. In this work, he showed that a charged, complex scalar field
around an AdS black hole may explain the superconductivity holographically by the
mechanism of spontaneous U(1) gauge symmetry breaking. Based on this argument,
he proposed that the Abelian-Higgs Lagrangian minimally coupled to the Einstein-
Hilbert Lagrangian with a negative cosmological constant spontaneously breaks the
local U(1) gauge symmetry through the mechanism of a charged superconducting
condensate formation close to the horizon of the black hole. This local symmetry
breaking in the bulk corresponds to a global U(1) symmetry breaking in the bound-
ary field theory, in the dual AdS/CFT language. However, from the discussions in
the preceding sections it is clear that, in order to obtain standard notion of super-
conducting phase transition holographically the condensate must vanish for T > Tc,
whereas, it must form a superconducting condensate for T < Tc. The above men-
tioned holographic model seems to fulfill this criteria in the sense that, for T > Tc
we get the Reissner-Nordström black hole solution which resembles the conducting
phase, whereas, for T < Tc the non-vanishing scalar leads to a superconducting black
hole solution. Motivated by the ingenuity of this approach a holographic model for
superconductors was indeed built in 2008 in the pioneering research by Hartnoll et.
al.[193]. This outstanding research ensured the close connection between gravity
and condensed matter theory[193]-[197], [206]-[210].

Let us mention some genuine features of the holographic model of supercon-
ductors [193]-[197]. First of all, following the scheme of AdS/CFT duality, a holo-
graphic charged superconducting condensate in d-dimensions is realized by a (d+1)-
dimensional bulk gravity theory in AdS space-time having a black hole. Secondly,
in order to have the desired conductor/superconductor phase transition at a critical
temperature (Tc) we must have a condensate at finite temperature. The Hawking
temperature of the black hole in the bulk carries the notion of temperature in the
boundary field theory. Thirdly, the second order phase transition at T = Tc, in the
boundary field theory, resulting a transition from conducting to superconducting
phase is dualized by a corresponding phase transition from a Reissner-Nordström
black hole with no hair to a superconducting black hole with non-vanishing hair
at T = Tc. At this point of discussion, the mechanism of condensate formation in
the bulk AdS space-time is worth mentioning. The dual action for a d-dimensional
holographic superconductor is given by[192, 193]

S =

∫
dd+1x

√
−g
(
R− 2Λ− 1

4
FµνF

µν − |∂µφ− iqAµφ|2 −m2φ2
)

(1.6)

where gµν is the AdS metric, R is the Ricci scalar, Fµν = ∂[µAν], Aµ is the gauge
field, and φ is the complex scalar with mass m and charge q. From (1.6) it is easy
to note that, close to the horizon, gtt becomes large and negative and hence the
effective mass of the scalar, m2

e = m2 + q2gttA2
t , becomes sufficiently negative to

destabilize the scalar field. As a consequence, the black hole becomes unstable to
forming scalar hair[197]. Alternatively, when qQ >> 1 (Q: charge of the black
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hole) the strong electric field on the horizon pull pairs of oppositely charged particle
out of the vacuum. Subsequently, particles having same charge as of the black hole
repelled away but are forced to reside close to the black hole due to the confining
property of the AdS space-time mentioned earlier in this chapter[78]. This ensemble
of charged particles is precisely the holographic realization of the superconducting
condensate[197].

Being familiar with the basic constructional details of the holographic super-
conductors, we may further mention some of its other properties that has been
unveiled since the discovery of this holographic model[193]-[197],[206]-[210], [211]-
[240]. These include: (i) The free energy of a black hole with scalar hair is always
lower than that of a black hole without hair. The free energy difference between
these two configurations always scales like (T − Tc)2 near the critical point which
indicates that a second order phase transition indeed occurs in going from conduct-
ing to superconducting phase. Moreover, this difference is removed when T → Tc;
(ii) The scalar field ψ, in the Abelian-Higgs part of the action (Eq. (1.6)), is put
by hand and plays the role of order parameter for the phase transition in the bulk
AdS. Then, according to the AdS/CFT dictionary, either of the coefficients of the
boundary expansion of ψ can be taken as the order parameter (〈O〉) of phase tran-
sition in the boundary field theory, provided the mass of the scalar field satisfies the
bound −d2/4 < m2L2 < −d2/4 + 1 (L : radius of the AdS space)[241, 242]. Near

the critical point (T = Tc) it behaves as 〈O〉 ∼ (1− T/Tc)1/2. This is a mean field
behavior as predicted by the Ginzburg-Landau theory[201, 203]. In addition, the
exponent 1/2 ensures that it is a second order phase transition; (iii) In the probe
limit,8 the real part of the conductivity, Re[σ(ω)], becomes a constant and indepen-
dent of the perturbation frequency, ω, for T > Tc. On the contrary, for T < Tc a
frequency gap (ωg) opens up at low-frequency, and subsequently the real part con-
tains a delta function peak at ω = 0 which corresponds to a pole in the imaginary
part of the conductivity[193]. This suggests that there is an infinite dc conductivity
for T < Tc. Moreover, the ratio ωg/Tc ≈ 8, which is very close to the experimentally
obtained result[243]; (iv) The non-linear gauge as well as gravity corrections (i.e.,
higher curvature corrections to Einstein gravity and higher derivative corrections to
the Maxwell field) have effects on the properties of the holographic superconduc-
tors. Usually, with increasing non-linearity holographic superconducting condensate
formation becomes difficult[213]-[240].

The expulsion of external magnetic field from inside a superconducting material
is one of the distinct features of the phenomena of superconductivity[203]. This
is known as the Meissner effect[199]. This property asserts that superconductors
behave as perfect diamagnetic materials. It is also observed that, above a certain
critical value of the external magnetic field the superconductivity is destroyed and
the sample reverts back to the normal state. Based on this behavior, superconduc-

8In the probe limit, gravity and matter decouple and the back-reaction of the gauge and the
scalar fields can be neglected in the neutral black hole background. This limit is achieved by
rescaling the matter fields in (1.6) by the charge of the scalar field (q) and taking the limit q →∞.
This simplifies the problem without hindering physical properties of the system.
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tors are classified into two categories, namely, type I and type II[203]. For a type
I superconductor, at T < Tc, there exists an upper critical magnetic field Bc(T )
below which no magnetic flux lines penetrate the sample. But, when the applied
magnetic field B > Bc the superconductivity is destroyed and the flux penetrates
perfectly. On the other hand, for a type II superconductor, below the critical tem-
perature, there exists two critical magnetic fields, Bc1(T ) and Bc2(T ) with Bc2 > Bc1.
When the external applied field is below Bc1(T ) no flux can penetrate the sample.
Whereas, for B > Bc2 > Bc1 superconductivity is completely destroyed. In the
domain Bc1 < B < Bc2 the magnetic flux partially penetrates the sample and it
develops a microscopic structure consisting of both normal and superconducting re-
gions known as the mixed state. It is in this region the Abrikosov vortex lattice is
formed[244].

Motivated by the ability of the holographic duality in describing several known
features of superconductors, responses of holographic superconductors in the pres-
ence of external magnetic fields have been studied at depth in the literature[230, 234,
239, 240],[245]-[258]. Based on these studies, it has been observed that these are
indeed type II superconductors, and there is an upper critical value of the magnetic
field above which the superconducting phase ceases to exist. Nevertheless, there is
a notable difference between these models and real-life superconductors regarding
the Meissner effect. From free-energy calculations it can be shown that there is no
way an external magnetic field can be repelled from within a holographic supercon-
ductor. Any finite magnetic field always penetrates the ‘sample’. This happens due
to the consideration of the probe limit[194]. As a result, the condensates adjust
themselves in such a way that they only fill a finite strip in the plane which reduces
the total magnetic field passing through it[245]. However, the hope is that a gauged
version of this holographic model may be able to expel magnetic fields in the usual
way thereby exhibiting Meissner effect[194].

Based on these approaches, studies in magnetic response of holographic super-
conductors have been further extended. For example, vortex and droplet solutions
have been constructed in the holographic superconductors[245]-[249]. Also, the su-
perconducting coherence length (ξ) has been computed which is in agreement with
the result of the Ginzburg-Landau theory[249].

Whenever one applies AdS/CFT duality to analyze strongly interacting field
theories, it is implied that the boundary field theory is relativistic in which the
Lorentz symmetry as well as the scale invariance is well preserved. This is man-
ifested through the isotropic scaling symmetry of the system under consideration:
t → λt, ~x → λ~x. But, it must be kept in mind while replicating condensed matter
systems holographically that, most of these systems are non-relativistic in nature
where Lorentz symmetry is broken explicitly[259, 260]. The behavior of these sys-
tems are governed by Lifshitz-like fixed points. These fixed points are characterized
by the anisotropic scaling symmetry t → λzt, ~x → λ~x. The exponent z is called
the “dynamic critical exponent” and it measures the degree of anisotropy between
space and time[259]. In order to describe these systems holographically, the standard
prescriptions of AdS/CFT duality need to be modified due to the non-relativistic
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nature of the systems[261]-[266]. As a matter of fact, these dual prescriptions pro-
vide gravity duals for systems which are realized by non-relativistic CFTs (hence-
forth NRCFT). Along with this development, black hole solutions in the Lifshitz
space-time has also been obtained[267]-[269] which may play an important role to
understand finite temperature field theories in this non-relativistic framework.

There are some serious theoretical motivations for studying these systems. For
example, Lifshitz-like fixed points appear in some strongly correlated systems (anisotropic
sine-Gordon model[270], finite temperature multicritical points in the phase dia-
grams of some systems[271], the Rokhsar-Kivelson dimer model[272], some lattice
models of strongly correlated electrons[273] etc.). The correlation functions in these
systems exhibit ultralocality in space at finite temperature and fixed time which
may play central role in explaining certain experimental observations[274]. Among
other non-relativistic systems, special importance has been given for systems having
Schrödinger symmetry (z = 2). Gravity dual for these systems have been pro-
posed in Refs.[262, 263]. These studies are motivated mainly by experiments with
fermions at unitarity and nucleon scattering experiments[275]. In this sense, study
of non-relativistic field theories using gauge/gravity duality has much more utility
in understanding real-life phenomena than its relativistic counterpart.

Over the past few years, motivated by the aforementioned facts, a series of work
have been undertaken in order to understand several crucial aspects of holographic
superconductors with Lifshitz scaling[276]-[290]. These studies have revealed the ef-
fects of anisotropy on characterizing properties of the superconductors. Also, effects
of magnetic field on holographic Lifshitz superconductors have been studied, and
alike AdS/CFT superconductors, interesting vortex and droplet solutions have been
obtained[284, 286, 287, 288].

In passing an interesting point must be added. In all these works gravity models
which are dual to the superconductors have been constructed. These are phenomeno-
logical models in the true sense. These models just reproduce the known properties
of the high-Tc superconductors that have been explored earlier either phenomeno-
logically or by explicit experiments[198]-[205]. It is believed that by appropriately
embedding the model into string theory the microscopic properties of the supercon-
ductors may be revealed[194], which in turn may open up a new window to study
microscopic properties of strongly correlated field theories much of which are still
incomprehensible.

1.2 Outline of the thesis

The present thesis is based on the works [120, 169, 231, 240, 287], and in the entire
thesis we aim to account for several non-linear aspects of black holes. We introduce
non-linear corrections to the usual gauge field and/or to the usual Einstein gravity.
Thus in our work we discuss non-linear corrections to the Einstein-Maxwell grav-
ity under the framework of General Relativity. These corrections can be treated
as higher-derivative corrections to the parent gravity theory in the sense that they
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include higher derivatives of the gauge fields (e.g., Maxwell gauge fields Aµ) and
of gravity field (metric gµν). In Chapter 2 and Chapter 3, based on the works in
Refs.[120],[169], we explore various thermodynamic aspects of gauge and/or gravity
corrected black holes in anti-de Sitter (AdS) space-time – the Born-Infeld-AdS (BI-
AdS) black hole, and the third order Lovelock-Born-Infeld-AdS (LBI-AdS) black
hole, respectively. In these chapters we discuss the behaviors of relevant thermody-
namic quantities, stability, and phase structure of the mentioned black holes. For
example, we determine the nature of phase transition in the BI-AdS black hole along
with computing thermodynamic quantities like, temperature, entropy, mass, specific
heat, etc. in Chapter 2; and a detail analysis of the critical behavior of the LBI-AdS
black hole is presented in Chapter 3 where the static scaling exponents are com-
puted, and the validity of the scaling laws are checked. Interestingly, our analysis is
based on ordinary thermodynamic approach[60] with suitable modifications of the
thermodynamic laws in accordance with the laws of black hole mechanics[59].

We further extend our study by exhibiting the effects of the aforementioned
non-linearities on the properties of holographic s-wave superconducting phase tran-
sitions which is an important outcome of the consistent efforts that has been paid to
declassify strongly interacting condensed matter systems via the AdS/CFT corre-
spondence with high-Tc superconductors as an useful example. These are discussed
in Chapters 4, 5, and 6. In Chapter 4 and Chapter 5, based on Refs.[231, 240],
the non-linear corrections to the gauge and/or gravity sector of the usual Einstein-
Maxwell-AdS gravity is considered, and modifications of properties of the holo-
graphic superconductors (such as, the critical temperature, order parameter, etc.)
due to their presence is derived in detail. On the other hand, based on Ref.[287], in
Chapter 6 the effects of non-linear, anisotropic scaling of the space and time coor-
dinates in a Lifshitz space-time is considered. The derived black hole is indeed an
anisotropic Lifshitz black hole characterized by a dynamical critical exponent that
measures the anisotropy, and effects of this exponent on the important properties
of the holographic Lifshitz superconductors is computed.

The whole thesis contains 6 chapters, including this introductory part. Chapter-
wise summary is given below.

Chapter 2: Thermodynamic Phase Transition in Born-Infeld-AdS Black Holes

In this chapter we present in details the thermodynamic phase transition in
Born-Infeld-AdS black holes. In our analysis we use an anlytic scheme which is
common in ordinary thermodynamics, namely, the Ehrenfest’s scheme. In our anal-
ysis the critical point of phase transition is marked by the points of discontinuity
of the specific heat. This methodology enables us to explain the phase transition
in ample details – a transition from lower mass black hole with negative specific
heat to a large mass black hole with positive specific heat. Moreover, the validity
of the two Ehrenfest’s equations determines that the phase transition is a second
order transition. The validity of this scheme is vindicated by analyzing the phase
transition in the framework of thermodynamic state space geometry approach where
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the Ruppeiner scalar curvature is found to be diverging at the critical points found
in the Ehrenfest’s scheme.

Chapter 3: Critical Phenomena in Higher Curvature Charged AdS Black Holes

In this chapter, we further extended our investigation of thermodynamics of AdS
black holes in presence of non-linear higher derivative corrections by studying crit-
ical phenomena in third order Lovelock-Born-Infeld-AdS black holes. We include
gauge as well as gravity corrections in our model and investigate the scaling behav-
ior in the mentioned black hole near the critical point(s) in a canonical ensemble
framework. We explicitly compute all the static critical exponents associated with
various thermodynamic entities of interest (e.g., specific heat, entropy, isothermal
compressibility, etc.) and found that all these exponents indeed satisfy static scaling
laws near the critical point(s). We also check the static scaling hypothesis for this
black hole and find its compatibility with thermodynamic scaling laws. We also
qualitatively discuss the thermodynamic stability and phase structure of the black
hole, and based on this we argue that there may be a continuous higher order phase
transition that essentially leads to thermodynamic stability of the black hole.

Chapter 4: Holographic s-wave Superconductors with Born-Infeld Correction

In this chapter we investigate several interesting properties of holographic s-wave
superconductors in the planar Schwarzschild-AdS background in the framework of
non-linear Born-Infeld electrodynamics. By explicit analytic methods we compute
the critical temperature and order parameter of holographic condensation. We elab-
orate on the role of next-to-leading order boundary expansion coefficient of the scalar
field (that eventually condenses below the critical temperature) as the order param-
eter, and compute the corresponding variation of the same with temperature. In
order to solve this non-trivial problem we explicitly use the Sturm-Liouville eigen-
value method[216], and compare our result with those existing in the literature[224].
We observe that the condensation formation becomes difficult as the value of the
Born-Infeld parameter increases. We also find that the critical exponent associated
with the order parameter is 1/2, which is consistence with the mean field theory
confirming a second order superconducting phase transition.

Chapter 5: Gauge and Gravity Corrections to Holographic Superconductors:
A Comparative Survey

In this chapter, we study the onset of holographic s-wave condensation in the (4+
1)-dimensional planar GaussBonnet-AdS (GB-AdS) black hole background. Along
with this higher curvature correction to the Einstein gravity, we introduce higher
derivative gauge field corrections to the Maxwell electrodynamics – the exponential
(ENE) and logarithmic (LNE) nonlinear corrections. These corrections may be
treated as Born-Infeld-like corrections for they posses similar properties as of the
latter. Working in the probe limit and performing explicit analytic computations,
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with and without magnetic field, we find that these higher order corrections indeed
affect various quantities characterizing the holographic superconductors – the critical
temperature for condensation decreases with increasing non-linearity, and the order
parameter and critical value of the magnetic field increase with increasing non-
linearity. We perform a comparative study of the two aforementioned non-linear
electrodynamics and show that the exponential electrodynamics has stronger effects
on the formation of the scalar hair. We observe that our results are consistence with
those obtained numerically in Ref.[236].

Chapter 6: Holographic Lifshitz Superconductors and Their Magnetic Response

In this chapter, we focus our attention to study the response of a holographic
s-wave Lifshitz superconductor under the influence of an external magnetic field.
These holographic models actually belong to a class of strongly interacting non-
relativistic field theory described by Lifshitz gravity in the holographic sense. After
providing basic properties of these superconductors existing in the literature[283],
we derive interesting vortex and droplet solutions for this model. We observe that
the obtained solutions remain unaffected by the presence of anisotropic scaling of
time and space in the theory securing the fact that they are independent of the
nature of the field theory concerned. We also compute the critical parameters of the
condensation and show that they depend on the dynamical critical exponent that
measures the anisotropy of the theory.

Chapter 7: Summary and Outlook

In this final chapter, we summarize our results followed by a discussion regarding
some possible future directions.



Chapter 2

Thermodynamic Phase Transition
In Born-Infeld-AdS Black Holes

2.1 Overview

In the early seventies the seminal research of Hawking and Bekenstein provided a
thrust in the study of black holes[52]-[58]. Their works, followed by several others,
established the fact that a black hole behaves like a thermodynamic system. A
striking addition in those studies was provided by the authors of Ref.[59] showing
the strange similarity between the laws of black hole mechanics and that of ordinary
thermodynamics. Thereafter substantial amount of efforts were given in order to
understand the thermodynamic properties of black holes, such as, their phase struc-
ture, behaviors of the thermodynamic quantities, etc. In this regard, the works of
Hut and Davies may be mentioned[69, 70]. Nevertheless, the instability of the black
holes in their formulation appeared to be a serious problem. However, the issue
was resolved with the discovery of phase transition phenomena in the Schwarzschild
black hole in anti-de Sitter space-time[78]. Till date several attempts have been
made in order to describe the phase transition phenomena in black holes[69]-[123].
All these works are basically based on the fact that at the critical point(s) of phase
transition the specific heat of the black hole diverges. Inspite of all these attempts,
the issue regarding the classification of the nature of the phase transition in black
holes remains highly debatable and worthy of further investigations.

In this chapter, based on the approach of Refs.[115]-[120], we discuss the exquisite
attempt that has been made recently to resolve the above issue by adopting the
Ehrenfest’s scheme of ordinary thermodynamics[60]. In usual thermodynamics it is
a general practice to adopt the Ehrenfest’s scheme in order to classify the order of
phase transition [124]-[128]. This has the following two basic advantages: (i) it is
simple and elegant, and (ii) it provides a unique way to classify the nature of the
phase transition in ordinary thermodynamic systems; even if the phase transition is
not a truly second order transition, we can determine the degree of its deviation by
defining a new parameter called Prigogine-Defay ratio (Π)[125]. The extension of
Ehrenfest’s scheme to black hole thermodynamics seems to be quite natural since

28
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black holes in many respects behave as ordinary thermodynamic objects.
On the other hand, constructing gravity theories in presence of various higher

derivative corrections to the usual Maxwell electrodynamics has always been a pop-
ular direction of research. Some important observations in this regard have already
been discussed in Chapter 1. In addition to that, let us mention some properties
of Einstein-Born-Infeld theory that will play a central role throughout this chapter.
This theory admits various static black hole solutions that possess several signifi-
cant qualitative features which is absent in ordinary Einstein-Maxwell gravity. A
few of them are given by the following: (i) The metric solutions in the Einstein-
Born-Infeld theory differs significantly from that of the Einstein-Maxwell theory,
and this results noticeable difference in the causal structure of the two solutions in
the two theories[27]; (ii) Depending on the value of the electric charge (Q) and the
Born-Infeld coupling parameter (b) it is observed that a meaningful black hole so-
lution exists only for bQ ≥ 0.5. On the other hand, for bQ < 0.5 the corresponding
extremal limit does not exist. This eventually puts a restriction on the parameter
space of BI-AdS black holes. This is indeed an interesting feature which is absent
in the usual Einstein-Maxwell theory[110]; (iii) Furthermore, one can note that for
bQ = 0.5, which corresponds to the critical Born-Infeld-AdS (BI-AdS) case, there
exists a new type of phase transition (HP3) which has identical thermodynamical
features as observed during the phase transition phenomena in non-rotating BTZ
black holes[110]. This is also an interesting observation that essentially leads to
a remarkable thermodynamical analogy which does not hold in the corresponding
Reissener-Nordstöm-AdS (RN-AdS) limit.

All the above mentioned facts provide enough motivation to carry out a further
investigation regarding the thermodynamic behavior of BI-AdS black holes in the
framework of standard thermodynamics. We adopt the Ehrenfest’s scheme of usual
thermodynamics in order to resolve a number of vexing issues regarding the phase
transition phenomena in BI-AdS black holes. The critical points correspond to
an infinite discontinuity in the specific heat (CΦ), which indicates the onset of a
continuous higher order transition. At this point it is worthwhile to mention that,
an attempt to verify the Ehrenfest’s equations for charged (RN-AdS) black holes
was first initiated in [117]. There, based on numerical techniques, the authors had
computed both the Ehrenfest’s equations close to the critical point(s). However,
due the presence of infinite divergences in various thermodynamic entities (like, heat
capacity, etc.), as well as the lack of analytic techniques, at that time it was not
possible to check the Ehrenfest’s equations exactly at the critical point(s). In order
to address the above mentioned issues, the present paper therefore aims to provide
an analytic scheme in order to check the Ehrenfest’s equations exactly at the critical
point(s). Moreover, the present analysis has been generalized taking the particular
example of BI-AdS black holes which is basically the non-linear generalization of
RN-AdS black holes[110]. Our analysis shows that it is indeed a second order phase
transition.

In continuation, we apply the widely explored state space geometry approach[129]-
[135] to analyze the phase transition phenomena in BI-AdS black holes. Our analysis
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reveals that the scalar curvature (R) diverges exactly at the critical points where
CΦ diverges. This signifies the presence of a second order phase transition, thereby
vindicating our earlier analysis based on Ehrenfest’s scheme.

Before we proceed further, let us mention about the organization of the present
chapter. The classification of phase transitions in ordinary thermodynamics has been
stated briefly in Section 2.2. In Section 2.3 we have discussed thermodynamic phases
of the BI black hole in AdS space after briefly mentioning the geometric structure
of the black hole (Section 2.3.1) and its thermodynamic quantities (Section 2.3.2).
Using Ehrenfest’s scheme, the nature of the phase transition in the BI-AdS black
hole has been discussed in Section 2.4. In Section 2.5 we analyze the phase transition
using the (thermodynamic) state space geometry approach. Finally, we draw our
conclusions in Section 2.6.

2.2 Phase transitions and their classifications in

ordinary thermodynamics

The phenomena of phase transition is very common in thermodynamics and sta-
tistical mechanics. It is responsible for almost all the physical processes that we
encounter, from the simplest water-vapor transition to the exotic superconducting
phase transition[60]. But not all phase transitions are equivalent. They can be clas-
sified depending upon the behavior of certain thermodynamic quantities associated
with the respective systems. For example, a first order phase transition involves la-
tent heat whereas, in a second order transition there is no involvement of latent heat.
The order of a phase transition is usually determined by observing the discontinuity
of the lowest order of the differential coefficients of the Gibbs function along the
line of transition[60]. Thus for a first order phase transition which involves latent
heat, the Gibbs free energy (G ) is continuous across the line, but its first derivatives
(∂G /∂T )P and (∂G /∂P )T which gives the entropy (s) and specific volume (v) of
the system respectively, are discontinuous. (Here T and P are the temperature and
pressure of the system, respectively.) Similarly, for a second order phase transition
in which there is no latent heat and no change in volume, the second derivatives of
G , representing specific heat, expansion coefficient, and compressibility are discon-
tinuous.

Any first order phase transition (or any transition that occurs at constant T and
P ) can be described by the Clausius-Clapeyron Equation[60] given below:

dP

dT
=
4s
4v

(2.1)

where the lhs represents the slope of the P − T curve (the coexistence curve), 4s
and 4v are the change in the entropy and volume of the constituents of the two
phases, respectively.

The Clausius-Clapeyron Equation is indeed derived from the Gibbs free energy
G = U −Ts+Pv, where it is assumed that the first derivatives of G with respect to
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the intrinsic variables (P and T ) are discontinuous and their specific values in two
phases give the slope of the coexistence curve at the phase transition point.

Contrary to the first order transition, a second order transition is described by
the following two equations known as the Ehrenfest’s equations [60]:(

∂P

∂T

)
S

=
1

V T

CP2 − CP1

β2 − β1

=
4CP
V T4β

, (2.2)(
∂P

∂T

)
V

=
β2 − β1

κ2 − κ1

=
4β
4κ

, (2.3)

where CP , β, and κ are specific heat at constant pressure, volume expansion coeffi-
cient, and isothermal compressibility of the system, respectively. At the point of a
second order phase transition both of these equations are satisfied. This is called a
second order transition since CP , β, and κ are second derivatives of G . Note that,
the suffices 1 and 2 denote two distinct phases of the system.

This classification can be extended further, however, as the order of phase tran-
sition increases the discontinuity in the relevant thermodynamic quantities becomes
progressively less important and it becomes less relevant to think of the transition
from one phase to another[60].

2.3 Thermodynamic phases of the Born-Infeld AdS

black hole

2.3.1 Geometric structure of the black hole

The Born-Infeld black holes are a new class of solutions of the Einstein’s equations.
These are in fact charged black holes which can be treated as non-trivial non-linear
generalizations of the Reissner-Nordström black holes since the ordinary Maxwell
Lagrangian which is coupled to the gravity action for the latter is replaced by non-
linear Born-Infeld Lagrangian[20]. Our primary target in this chapter is to study
thermodynamics and phase transitions of (3+1)-dimensional Born-Infeld black hole
in AdS space-time (with AdS radius L) (henceforth BI-AdS). The action that leads
to the mentioned solution is given by[110]

S =
1

16πG

∫
d4x
√
−g
[
R− 2Λ + 4L (F )

]
(2.4)

where R is the Ricci scalar derived from the metric gµν having determinant g, Λ =

− 3

L2
is the cosmological constant which is negative for our AdS space-time, and

L (F ) = b2

(
1−

√
1− 2F

b2

)
(2.5)
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is the non-linear Born-Infeld Lagrangian. The parameter b in Eq. (2.5) is related to

the string tension α′ as b =
1

2πα′
. Note that, in the limit b→∞ the action Eq. (2.4)

reduces to the Reissner-Nordström action[1]. In our analysis we always choose the
system of natural units ~ = G = c = 1. In this system of units the black hole
metric can be written as[110]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2 (2.6)

where the metric coefficient f(r) is given by

f(r) = 1− 2M

r
+ r2 +

2b2r2

3

(
1−

√
1 +

Q2

b2r4

)
+

4Q2

3r2
F

(
1

4
,
1

2
,
5

4
,
−Q2

b2r4

)
. (2.7)

In Eq. (2.7) F

(
1

4
,
1

2
,
5

4
,
−Q2

b2r4

)
is the hypergeometric function[291]. The only non-

zero component of the gauge field strength Fµν , which gives the electric field (E ) of
the BI-AdS black hole, is given by

Ftr = E =
Q

r2

√
1 + Q2

b2r4

. (2.8)

In the subsequent analysis we may choose Q > 0 and b > 0 without any loss of
generality[110]. At this point the following limiting cases are worth noting: (i) In
the limit Q → 0, the metric Eq. (2.7) reduces to that of the Schwarzschild-AdS
black hole; (ii) For b→∞ and Q 6= 0, Eq. (2.7) turns into the metric coefficient of
the Reissner-Nordström-AdS black hole. In addition to that, the BI-AdS black hole
possesses two horizons r± alike the Reissner-Nordström-AdS black hole but unlike
the Schwarzschild-AdS black hole. In this regard the Schwarzschild-AdS black hole
should be disconnected to the BI-AdS black hole[110]. The mass of the black hole
is defined by f(r+) = 0, which yields

M(r+, Q, b) =
r+

2
+
r3

+

2
+
b2r3

+

3

(
1−

√
1 +

Q2

b2r4
+

)
+

2Q2

3r+

F

(
1

4
,
1

2
,
5

4
,
−Q2

b2r4

)
(2.9)

where r+ is the radius of the outer horizon.

2.3.2 Thermodynamic variables of the black hole

Being familiar with the basic geometry of the BI-AdS black hole we proceed further
to derive several thermodynamic quantities that are most relevant to unravel the
phase structure of the black hole. In this regard we need to tailor the ordinary
thermodynamic variables appropriately in order to apply them to black hole physics
in accordance with the laws of black hole mechanics[59], namely, the energy (E) is
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replaced by the mass (M) (Eq. (2.9)), pressure (P ) is replaced by the negative of
the electrostatic potential difference (−Φ) and volume (V ) is replaced by charge (Q)
of the black hole.

To begin with, let us calculate the Hawking temperature of the black hole. In
order to achieve this we analytically continue the metric Eq. (2.6) to the Euclidean
sector by setting t → iτ . The resulting metric then require to be regular at the
horizon (r+). Thus, we must identify τ ∼ τ + ζ, where ζ (= 2π/κ; κ: the surface
gravity of the black hole) is the inverse of the Hawking temperature, in order to
avoid conical singularity at the origin. Following this line of analysis the Hawking
temperature for the BI-AdS black hole is obtained as

T =
1

4π

[
1

r+

+ 3r+ + 2b2r+

(
1−

√
1 +

Q2

b2r4
+

)]
. (2.10)

From the first law of black hole thermodynamics we get, dM = TdS + ΦdQ[59].
Using this we obtain the entropy of the black hole as,

S =

∫ r+

0

1

T

(
∂M

∂r

)
Q

dr = πr2
+. (2.11)

From this expression we observe that the entropy of the BI-AdS black hole is pro-
portional to the area of the outer horizon. So, the usual area law for black hole
entropy[59] also holds for the BI-AdS black holes.
Substituting Eq. (2.11) into Eq. (2.10) we rewrite the Hawking temperature as[110],

T =
1

4π

[√
π

S
+ 3

√
S

π
+

2b2
√
S√
π

(
1−

√
1 +

Q2π2

b2S2

)]
. (2.12)

The above expression for the temperature as a function of entropy allows us to
analyze the behavior of the temperature which is important for gaining information
about the phase structure of the black hole.

From Fig. 2.1 we clearly observe there is a ‘hump’ and a ‘dip’ in the T − S
graph. Another interesting thing about the graph is that, it is continuous in S. This
continuous behavior of T rules out the possibility of first order phase transition. In
order to check whether there is a possibility of higher order phase transition, we
compute the specific heat at constant potential (CΦ) (which is analog of the specific
heat at constant pressure (CP ) in usual thermodynamics).

The electrostatic potential difference between the black hole horizon and the
infinity is defined by Ref. [100] as

Φ =
Q

r+

F

(
1

4
,
1

2
,
5

4
,
−Q2

b2r4
+

)
. (2.13)

Using Eq. (2.11) we further express Φ as

Φ =
Q
√
π√
S

F

(
1

4
,
1

2
,
5

4
,
−Q2π2

b2S2

)
. (2.14)
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Figure 2.1: Temperature (T ) plot for BI-AdS black hole with respect to entropy (S)
for fixed Q = 0.13 and b = 10.

From the thermodynamical relation T = T (S,Q), we find(
∂T

∂S

)
Φ

=

(
∂T

∂S

)
Q

−
(
∂T

∂Q

)
S

(
∂Φ

∂S

)
Q

(
∂Q

∂Φ

)
S

, (2.15)

where we have used the thermodynamic identity(
∂Q

∂S

)
Φ

(
∂S

∂Φ

)
Q

(
∂Φ

∂Q

)
S

= −1. (2.16)

Finally, using Eqs. (2.12), (2.14) and (2.15), the heat capacity CΦ is expressed as,

CΦ = T

(
∂S

∂T

)
Φ

=
N (Q, b, S)

D(Q, b, S)
, (2.17)

where

N (Q, b, S) = −2S

{
π +

(
3− 2b2

(
−1 +

√
1 +

Q2π2

b2S2

))
S

}
{
b2S2 +

(
π2Q2 + b2S2

)
F

(
3

4
, 1,

5

4
,
−Q2π2

b2S2

)}
(2.18)

and

D(Q, b, S) = b2S2

{
π +

(
−3 + 2b2

(
−1 +

√
1 +

Q2π2

b2S2

))
S

}

+ 2b2S (−πQ+ bS) (πQ+ bS) F

(
1

4
,
1

2
,
5

4
,
−Q2π2

b2S2

)
+
(
π − 3S − 2b2S

) (
π2Q2 + b2S2

)
F

(
3

4
, 1,

5

4
,
−Q2π2

b2S2

)
. (2.19)
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Figure 2.2: Plot of specific heat (CΦ)
against entropy (S), at the first critical
point (S1), for fixed Q = 0.13 and b = 10.
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Figure 2.3: Plot of specific heat (CΦ)
against entropy (S), at the second critical
point (S2), for fixed Q = 0.13 and b = 10.

Let us first plot CΦ − S graphs (Fig. 2.2 & Fig. 2.3) and make a qualitative
analysis of the plots.

From these figures it is evident that the heat capacity (CΦ) suffers discontinuities
exactly at two points (S1 and S2) which correspond to the critical points for the phase
transition in the BI-AdS black hole. Similar conclusion also follows from the T − S
plot (Fig. 2.1), where the ‘hump’ corresponds to S1 and the ‘dip’ corresponds to S2.

The graph of CΦ−S shows that there are three phases of the black hole - Phase I
(0 < S < S1), Phase II (S1 < S < S2) and Phase III (S > S2). Since the higher mass
black hole possesses larger entropy/horizon radius, therefore at S1 we encounter a
phase transition from a smaller mass black hole (phase I) to an intermediate (higher
mass) black hole (phase II). On the other hand, S2 corresponds to the critical point
for the phase transition from the intermediate black hole (phase II) to a larger mass
black hole (phase III). Finally, Fig. 2.2 and Fig. 2.3 also let us conclude that the
heat capacity (CΦ) is positive for phase I and phase III, whereas it is negative for
phase II. Therefore, phase I and phase III correspond to the thermodynamically
stable phases (CΦ > 0), whereas phase II stands for a thermodynamically unstable
phase (CΦ < 0).

As a next step, we calculate the volume expansion coefficient (β) and the isother-
mal compressibility (κ) of the black hole which will play a central role in the analytic
calculations to be presented in the next section. In the case of the BI-AdS black
hole these are defined as

β =
1

Q

(
∂Q

∂T

)
Φ

, (2.20)

κ =
1

Q

(
∂Q

∂Φ

)
T

. (2.21)

Using Eqs. (2.12) and (2.14), and considering the thermodynamic relation(
∂Q

∂T

)
Φ

= −
(
∂Φ

∂S

)
Q

(
∂Q

∂Φ

)
S

(
∂S

∂T

)
Φ



2.4. Study of phase transition using the Ehrenfest’s scheme 36

we see that

β =
−8b2π

3
2S

5
2

D(Q, b, S)
, (2.22)

where the denominator is identified as Eq. (2.19).
In order to calculate κ, we make use of the thermodynamic identity(

∂Q

∂Φ

)
T

(
∂Φ

∂T

)
Q

(
∂T

∂Q

)
Φ

= −1. (2.23)

Using Eq. (2.16) we obtain from Eq. (2.23)

(
∂Q

∂Φ

)
T

=

(
∂T

∂S

)
Q

(
∂Q

∂Φ

)
S(

∂T

∂S

)
Φ

. (2.24)

Using Eqs. (2.12), (2.14), (2.15), and (2.24) we finally obtain

κ =
Ψ(Q, b, S)

D(Q, b, S)
(2.25)

where

Ψ(Q, b, S) =
−2b2S

3
2

Qπ
1
2

[
2π2Q2 − πS

√
1 +

Q2π2

b2S2

+ 2b2

(
− 1 +

√
1 +

Q2π2

b2S2

)
+ 3

√
1 +

Q2π2

b2S2

]
(2.26)

and the denominator D(Q, b, S) is given by Eq. (2.19).
Note that, the denominators of both β and κ are indeed identical with that of

CΦ. This is manifested in the fact that both β and κ diverge exactly at the point(s)
where CΦ diverges. This is reassured by comparing the following plots (Figs.2.4,
2.5, 2.6, 2.7) for β and κ with Figs. 2.2, 2.3 showing the divergences in CΦ.

From the above discussions it is evident that the phase transitions we encounter
in BI-AdS black holes are indeed continuous higher order. In order to address it
more specifically (i.e., whether it is a second order or any higher order transition) we
adopt a specific scheme, known as Ehrenfest’s scheme in standard thermodynamics,
which will be the main topic of discussion in the next Section 2.4.

2.4 Study of phase transition using the Ehren-

fest’s scheme

In Fig. 2.2 and Fig. 2.3 we observed discontinuity in the heat capacity. However,
discontinuity in the heat capacity does not always imply a second order phase tran-
sition, rather it suggests a continuous higher order transition in general. Ehrenfest’s
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Figure 2.4: Plot of volume expansion coef-
ficient (β) against entropy (S), at the first
critical point (S1), for fixed Q = 0.13 and
b = 10.
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Figure 2.5: Plot of volume expansion coef-
ficient (β) against entropy (S), at the sec-
ond critical point (S2), for fixed Q = 0.13
and b = 10.
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Figure 2.6: Plot of isothermal compress-
ibility (κ) against entropy (S), at the first
critical point (S1), for fixed Q = 0.13 and
b = 10.
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Figure 2.7: Plot of isothermal compress-
ibility (κ) against entropy (S), at the sec-
ond critical point (S2), for fixed Q = 0.13
and b = 10.

equations play an important role in order to determine the nature of such higher
order transitions for various conventional thermodynamical systems[124]-[128] as
discussed in Section 2.2. This scheme can be applied in a simple and elegant way in
standard thermodynamic systems. The nature of the corresponding phase transition
can also be classified by applying this scheme. Moreover, even if a phase transition
is not a genuine second order, we can determine the degree of its deviation by cal-
culating the Prigogine-Defay (PD) ratio[124, 125, 126]. Here we apply a similar
technique to classify the phase transition phenomena in (BI-AdS) black holes and
check the validity of Ehrenfest’s scheme for black holes. Thus, after suitable re-
placements of the thermodynamic variables, as demanded by the laws of black hole
mechanics[59] (cf. Section 2.3.2), the modified Ehrenfest’s equations (Eqs. (2.2),
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(2.3)) become[115]-[135]

−
(
∂Φ

∂T

)
S

=
1

QT

CΦ2 − CΦ1

β2 − β1

=
4CΦ

QT4β
, (2.27)

−
(
∂Φ

∂T

)
Q

=
β2 − β1

κ2 − κ1

=
4β
4κ

, (2.28)

respectively.
In order to determine the order of the phase transition we analytically check the

validity of the two Ehrenfest’s equations (Eq. (2.27) & Eq. (2.28)) at the points of
discontinuity Si ( i = 1, 2). Furthermore, for notational convenience, we denote the
critical values for the temperature (T ) and charge (Q) as Ti and Qi, respectively.

Let us now calculate the lhs of the first Ehrenfest’s Eq. (2.27), which may be
written as

−
[(

∂Φ

∂T

)
S

]
S=Si

= −
[(

∂Φ

∂Q

)
S

]
S=Si

[(
∂Q

∂T

)
S

]
S=Si

. (2.29)

Using Eqs. (2.12) and (2.14) we further obtain

−
[(

∂Φ

∂T

)
S

]
S=Si

=
Si
Qi

[
1 +

(
1 +

Q2
iπ

2

b2S2
i

)
F

(
3

4
, 1,

5

4
,
−Q2

iπ
2

b2S2
i

)]
(2.30)

In order to calculate the rhs of the first Ehrenfest’s Eq. (2.27), we adopt the
following procedure. From Eqs. (2.17) and (2.20) we find

Qiβ =

[(
∂Q

∂T

)
Φ

]
S=Si

=

[(
∂Q

∂S

)
Φ

]
S=Si

(
CΦ

Ti

)
. (2.31)

Therefore, the rhs of Eq. (2.27) becomes

4CΦ

TiQi4β
=

[(
∂S

∂Q

)
Φ

]
S=Si

. (2.32)

Using Eq. (2.14) we can further write

4CΦ

TiQi4β
=
Si
Qi

[
1 +

(
1 +

Q2
iπ

2

b2S2
i

)
F

(
3

4
, 1,

5

4
,
−Q2

iπ
2

b2S2
i

)]
. (2.33)

From Eqs. (2.30) and (2.33) it is evident that both the lhs and the rhs of the
first Ehrenfest’s equation (Eq. (2.27)) indeed match at the critical points Si. As a
matter of fact, the divergence of CΦ in the numerator is effectively canceled out by
the diverging nature of β appearing at the denominator, which ultimately yields a
finite value for the rhs of Eq. (2.27).

In order to calculate the lhs of the second Ehrenfest’s Eq. (2.28), we use the
thermodynamic relation

T = T (S,Φ)
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which leads to (
∂T

∂Φ

)
Q

=

(
∂T

∂S

)
Φ

(
∂S

∂Φ

)
Q

+

(
∂T

∂Φ

)
S

. (2.34)

Since CΦ diverges at the critical points (Si), it is evident from Eq. (2.17) that[(
∂T
∂S

)
Φ

]
S=Si

= 0. Also, from Eq. (2.14) we find that
(
∂S
∂Φ

)
Q

has finite values at the

critical points (Si). Thus from Eq. (2.34) and using Eq. (2.27) we may write

−

[(
∂Φ

∂T

)
Q

]
S=Si

= −
[(

∂Φ

∂T

)
S

]
S=Si

=
4CΦ

TiQi4β
. (2.35)

From Eq. (2.21), at the critical points we can write

κQi =

[(
∂Q

∂Φ

)
T

]
S=Si

. (2.36)

Using Eqs. (2.23) and (2.20) this can be further written as

κQi = −

[(
∂T

∂Φ

)
Q

]
S=Si

Qiβ. (2.37)

Therefore, the rhs of Eq. (2.28) may be finally expressed as[119]

4β
4κ

= −
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]
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(
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4
,
−Q2

iπ
2

b2S2
i

)]
. (2.38)

This as well proves the validity of the second Ehrenfest’s equation (Eq. (2.28))
at the critical points Si. Finally, using Eqs. (2.33) and (2.38), the Prigogine-Defay
(PD) ratio[125] may be obtained as

Π =
4CΦ4κ
TiQi(4β)2

= 1 (2.39)

which confirms the second order nature of the phase transition.

2.5 Study of phase transition using state space

geometry

Spurred by the elegance of the Riemannian geometry an alternative approach, com-
monly known as thermodynamic state space geometry, to describe ordinary ther-
modynamic systems as well as black holes (which also behave as thermodynamic
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systems) was put forward by G. Ruppeiner[129]-[135]. Encouraged by the suc-
cesses of this approach in describing thermodynamic phases of several black hole
systems[137]-[149], in this section we intend to apply this approach to study the
phase transition phenomena in BI-AdS black hole. This will enable us to check
the consistency and validity of the Ehrenfest’s scheme that has been discussed in
Section 2.4. The main theme of this approach has already been mentioned in some
detailed in the Chapter 1. Based on that discussion we may infer that this method
provides an elegant way to analyze a second order phase transition near the critical
point.

In the state space geometry approach one aims to calculate the scalar curvature
(R)[129]-[135] which suffers a discontinuity at the critical point for the second order
phase transition. In order to calculate the curvature scalar (R) we need to determine
the Ruppeiner metric coefficients which may be defined as[129, 131, 133, 135]

gRij = −∂
2S(xi)

∂xi∂xj
(2.40)

where xi = xi(M,Q), i = 1, 2 are the extensive variables of the system. From
the computational point of view it is convenient to calculate the Weinhold metric
coefficients[148]

gWij =
∂2M(xi)

∂xi∂xj
(2.41)

(where xi = xi(S,Q), i = 1, 2) that are conformally connected to that of the Rup-
peiner geometry through the following map[136, 137]

dS2
R =

dS2
W

T
. (2.42)

Using these definitions (Eqs. (2.40),(2.41) and (2.42)) and choosing x1 = S,
x2 = Q the Ruppeiner metric coefficients are obtained as
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√
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)] . (2.45)
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In obtaining these metric coefficients we have used Eq. (2.9). Now, the Ricci curva-
ture scalar (R) can be computed as[129, 131, 133, 135]

R =
℘(S,Q)

<(S,Q)
. (2.46)

The numerator ℘(S,Q) is too much cumbersome which prevents us to present its
detail expression for the present work. However, the denominator <(S,Q) may be
expressed as

<(S,Q) =

√
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[
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π2Q2
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))
S6
)3

. (2.47)

In Fig. 2.8 and Fig. 2.9 below we have plotted the thermodynamic scalar curva-
ture (R) as a function of entropy (S) as an important part of our discussion.

S1

0.03 0.04 0.05 0.06

S

- 1000

- 500

500

1000

1500

R

Figure 2.8: Plot of scalar curvature (R)
against entropy (S) at the first point of di-
vergence (S1) (antisymmetric divergence),
for fixed Q = 0.13 and b = 10.
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Figure 2.9: Plot of scalar curvature (R)
against entropy (S) at the second point of
divergence (S2) (symmetric divergence),
for fixed Q = 0.13 and b = 10.

From Figs. 2.8 and 2.9 we observe that the scalar curvature (R) diverges exactly
at the points where the specific heat (CΦ) diverges (see Figs. 2.2 & 2.3). This is
an expected result, since according to Ruppeiner’s prescription any divergence in R
implies a corresponding divergence in the heat capacity CΦ (which is thermodynamic
analog of CP ) that essentially leads to a change in stability[133]. On the other hand,
no divergence in R could be observed at the Davis critical point[70], which is marked
by the divergence in CQ (which is the thermodynamic analog of CV ). Similar features
have also been observed earlier[116, 117].
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2.6 Conclusive remarks

In this chapter we systematically analyze the phase transition phenomena in Born-
Infeld AdS (BI-AdS) black holes. We have performed our entire analysis based on
standard thermodynamic approach where the standard thermodynamic variables
have been suitably modified so that they can be applied to our black hole system.
In this regard the laws of black hole mechanics have been our guiding principle[59].
The main facet of our model is the presence of a non-linear higher derivative correc-
tion to the Maxwell gauge field (which is coupled to the gravity action, Eq. (2.4))
known as the Born-Infeld correction. Notably, this correction results non-trivial
modifications of the geometric and thermodynamic properties of the black hole (see
Section 2.3.1 & Section 2.3.2). Our results are valid for all orders in the Born-Infeld
(BI) parameter (b). The continuous nature of the T − S plot (Fig. 2.1) essentially
rules out the possibility of any first order transition. On the other hand, the dis-
continuity of the heat capacity CΦ (Fig. 2.2 & Fig. 2.3) indicates the onset of a
continuous higher order transition. In order to address this issue further, we pro-
vide a detailed analysis of the phase transition phenomena using Ehrenfest’s scheme
of standard thermodynamics[60] which uniquely determines the second order nature
of the phase transition. At this stage it is reassuring to note that the first applica-
tion of the Ehrenfest’s scheme in order to determine the nature of phase transition
in charged (Reissener-Nordstrom (RN-AdS)) AdS black holes had been commenced
in Ref.[117]. There the analysis had been carried out numerically in order to check
the validity of the Ehrenfest’s equations close to the critical point(s). Unfortunately,
the analysis presented in Ref.[117] was actually in an underdeveloped stage. This
is mainly due to the fact that at that time no such analytic scheme was available
in the literature. As a result, at that stage of analysis it was not possible to check
the validity of the Ehrenfest’s equations exactly at the critical point(s) due to the
occurrence infinite divergences of various thermodynamic entities at the (phase)
transition point(s).

In order to remove the above mentioned difficulty and put the Ehrenfest’s scheme
in a firm theoretical platform, we have provided an analytic scheme to check the
validity of the Ehrenfest’s equations exactly at the critical point(s). Furthermore,
we have carried out the entire analysis taking the particular example of BI-AdS
black hole which is basically the non-linear generalization of RN-AdS black hole.
Therefore, our results are quite general, and hence are valid for a wider class of
charged black holes in the usual Einstein gravity.

Also, we have analyzed the phase transition phenomena using state space ge-
ometry approach. Our analysis shows that the scalar curvature (R) suffers dis-
continuities exactly at the (critical) points where the heat capacity (CΦ) diverges
(Fig. 2.8 & Fig. 2.9). This further indicates the second order nature of the phase
transition. Thus, from our analysis it is clear that both the Ehrenfest’s scheme and
the state space geometry approach essentially lead to an identical conclusion. This
also establishes their compatibility while studying phase transitions in black holes.

Finally, we remark that the curvature scalar, which behaves in a very suggestive
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way for conventional systems, displays similar properties for black holes. Specifically,
a diverging curvature that signals the occurrence of a second order phase transition
in usual systems retains this characteristic for black holes. Our analysis thus re-
veals a direct connection between the Ehrenfest’s scheme and the well established
thermodynamic state space geometry.

In this chapter we have successfully addressed the nature of phase transition in
charged black holes with higher derivative corrections to the coupled gauge field.
But, there remains several other crucial aspects that one encounters while carrying
out the study of thermodynamics of black holes. The study of critical phenomena in
black holes is one of them. Studying this phenomena one becomes familiar with the
behavior of various thermodynamic systems close to the critical point(s). Keeping in
mind the fact that black holes are thermodynamic systems, in the next Chapter 3 we
shall study critical phenomena in a higher curvature charged AdS black hole, namely,
the third-order Lovelock-AdS black hole. In addition to the curvature correction to
the Einstein gravity the Born-Infeld correction to the usual Maxwell gauge filed will
also be taken into account. In other words, we’ll study the thermodynamic aspect
of a black hole with both non-linear gauge and gravity corrections.



Chapter 3

Critical Phenomena In Higher
Curvature Charged AdS Black
Holes

3.1 Overview

In the study of phase transition of a given thermodynamic system one becomes fa-
miliar with the behavior of the system in the neighborhood of the critical point(s).
These are the points of singularity of various thermodynamic quantities (such as,
specific heat, compressibility, etc.) related to the system. The diverging thermody-
namic quantities are derivatives of the free energy associated with the system, and
the order of the derivatives determine the order of the phase transition.1 In fact,
the divergence of the correlation length (ξ) of the system is manifested as the diver-
gences of these quantities[150]-[152]. The primary motivation for studying critical
phenomena of a system is to express these singularities in the form of power laws,
characterized by a set of indices, known as the static critical exponents, that deter-
mine the critical behavior of the given system qualitatively[150]. It is found that,
as ξ → ∞, correlations extend over the macroscopic distances in the system. As a
result, two different systems with different microscopic structures can no longer be
differentiated from each other leading to a universal behavior of the systems[150].
In general, the critical exponents depend on (i) the spatial dimensionality (n) of
the space in which the system is embedded, (ii) the range of interactions in the
system, etc. For example, systems which posses short range interactions the critical
exponents are found to be dependent on n, whereas for systems having long range
interactions these are independent of n. It is interesting to note that these exponents
are not independent of each other, they are related to each other by the static scaling
laws [151, 152]. Since black holes behave as thermodynamic systems, it is quite nat-
ural to study the qualitative behavior of the black holes via the critical phenomena
and determine the critical exponents associated with the thermodynamic quantities

1A brief overview of the phase transition phenomena has been given in Section 2.2, Chapter 2.
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pertaining to the black holes[153]-[169].
Following this line of argument, in this chapter we intend to carry out a detailed

analytic computation to investigate the critical phenomena in charged third order
Lovelock black hole in AdS space-time. Apart from the higher curvature corrections,
we introduce Born-Infeld corrections to the matter sector of the mentioned black
hole. Interestingly, since we are considering third order Lovelock black holes, we are
in fact in the regime of higher dimensional gravity theory. A brief discussion on the
importance of gravity theories in higher dimensions is given in Chapter 1. However,
some additional motivations for the present study are in order: (i) The violation of
the usual area law of black hole entropy is a general feature of higher curvature black
holes. In this regard it is interesting to study the thermodynamic phase structure
of the third order Lovelock-Born-Infeld-AdS (henceforth LBI-AdS) black hole and
verify whether it possesses the same set of critical exponents as was obtained earlier
in Ref.[167] in the context of higher dimensional charged AdS black holes; (ii) Born-
Infeld-AdS black holes in the usual (3 + 1)-dimensional Einstein gravity exhibit
a lower bound on the Born-Infeld parameter[110]. However, in Ref.[167] it was
observed that this bound was removed in higher dimensions. Thus, it is worthy
of checking whether there is any bound on the Born-Infeld parameter in the third
order LBI-AdS black hole we are considering.

Enlightened by these facts, we primarily address the following issues in the con-
text of LBI-AdS black hole which may be viewed as a solution to a higher dimen-
sional gravity theory where non-linear, higher derivative corrections to both gauge
and gravity sector is explicit. These are given by: (i) Phase structure and stability
of the LBI-AdS black hole, (ii) the critical exponents associated with relevant ther-
modynamic quantities of the black hole, and (iii) validity of the static scaling laws
and the static scaling hypothesis for this model.

The contents of the present chapter are organized as follows: In Section 3.2 we
discuss geometric and thermodynamic properties of the third order LBI-AdS black
hole. The phase structure and stability of the mentioned black hole are analyzed
qualitatively in Section 3.3. In Section 3.4 the critical exponents are computed, and
the validity of the static scaling laws and static scaling hypothesis are discussed.
Finally, we end the chapter with some conclusive remarks in Section 3.5.

3.2 Geometric and thermodynamic properties of

Lovelock-Born-Infeld-AdS black holes

3.2.1 Gravity action and metric structure

Lovelock black holes are the solutions to the Lovelock gravity which is essentially
Einstein gravity modified by higher curvature terms coupled to the usual Einstein-
Hilbert action[5]-[8]. The effective action that describes the Lovelock gravity in
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d = (n+ 1)-dimensions (n: spatial dimensions) can be written as2[5]

I =
1

16π

∫
dn+1x

√
−g

[n+1
2

]∑
i=0

αiLi (3.1)

where αi are arbitrary constants and Li is the Euler density of a 2i-dimensional
manifold (see the discussions of Chapter 1). In (n + 1) dimensions all terms for
which i > [(n + 1)/2] are equal to zero, the term i = (n + 1)/2 is a topological
term, and terms for which i < [(n+1)/2] contribute to the field equations. Since we
are studying third order Lovelock gravity in the presence of Born-Infeld nonlinear
electrodynamics[20], the effective action of Eq. (3.1) may be written as[102]

I =
1

16π

∫
dn+1x

√
−g
(
α0L0 + α1L1 + α2L2 + α3L3 + L(F )

)
=

1

16π

∫
dn+1x

√
−g
(
− 2Λ + R + α2L2 + α3L3 + L(F )

)
. (3.2)

In Eq. (3.2) Λ is the cosmological constant given by Λ = −n(n−1)/2L2 (L: the AdS
length), α2 and α3 are the second and third order Lovelock coefficients, L1 = R is
the usual Einstein-Hilbert Lagrangian, L2 =

(
RµνγδR

µνγδ − 4RµνR
µν + R2

)
is the

Gauss-Bonnet Lagrangian, and

L3 = 2RµνσκRσκρτR
ρτ

µν + 8Rµν
σρR

σκ
ντR

ρτ
µκ + 24RµνσκRσκνρR

ρ
µ

+ 3RRµνσκRσκµν + 24RµνσκRσµRκν + 16RµνRνσR
σ
µ − 12RRµνRµν + R3

(3.3)

is the third order Lovelock Lagrangian.
The non-linear Born-Infeld Lagrangian L(F ) in Eq. (3.2) is given by[102]

L(F ) = 4b2

(
1−

√
1 +

F 2

2b2

)
. (3.4)

Note that, in Eq. (3.4), Fµν = ∂µAν − ∂νAµ, F 2 = FµνF
µν , and b is the Born-Infeld

parameter. In the limit b→∞ we recover the standard Maxwell form L(F ) = −F 2.
It is to be remembered that, in all our subsequent analysis we shall consider the

special case α3 = 2α2
2 =

α′2

72
[6]-[8],[101, 102].

The solution of the LBI-AdS black hole in d = (n+1)-dimensions can be written
as[102]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

k,n−1 (3.5)

2Here we are using the system of natural units in which G = ~ = kB = c = 1.
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where

dΩ2
k,n−1 =



dθ2
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sin2θjdθ
2
i , k = 1

dθ2
1 + sinh2θ1dθ

2
2 + sinh2θ1

n−1∑
i=3

i−1∏
j=2

sin2θjdθ
2
i , k = −1

n−1∑
i=1

dφ2
i , k = 0.

(3.6)

In Eq. (3.6) the quantity k determines the structure of the black hole horizon: k =
+1, −1 and 0 correspond to spherical, hyperbolic and planar horizon, respectively.
At this point of discussion it must be mentioned that the Lagrangian in Eq. (3.2)
is the most general Lagrangian in seven space-time dimensions that produces the
second order field equations[101]. Thus, we shall restrict ourselves in the seven
space-time dimensions (n = 6).

The equation of motion for the electromagnetic field for this (6 + 1)-dimensional
space-time can be obtained by varying the action Eq. (3.2) with respect to the gauge
field Aµ. The result is[102]:

∂µ

√−gF µν√
1 + F 2

2b2

 = 0. (3.7)

The solution of Eq. (3.7) is given by[102]

Aµ = −
√

5

8

( q
r4

)
H (η)δ0

µ. (3.8)

Here H (η) is the abbreviation of the hypergeometric function given by[291]

H (η) = H

(
1

2
,
2

5
,
7

5
,−η

)
. (3.9)

In Eq. (3.8), η =
10q2

b2r10
and q is a constant of integration which is related to the

charge (Q) of the black hole. We can obtain the charge (Q) of the black hole by
calculating the flux of the electric field at infinity[1, 101, 102]. Therefore

Q = −
∫

B

dn−1ω
√
σnµτν

 F µν√
1 + F 2

2b2


=

Vn−1

4π

√
(n− 1)(n− 2)

2
q

=

√
10π2q

4
(for n = 6) (3.10)



3.2. Geometric and thermodynamic properties of Lovelock-Born-Infeld-AdS black holes48

where nµ and τν are the time-like and space-like unit normal vectors to the boundary
B, respectively, and σ is the determinant of the induced metric σij on B having
coordinates ωi. It is to be noted that, in deriving Eq. (3.10) we have only considered
the F tr component of F µν .

The quantity Vn−1 in Eq. (3.10) is the volume of the (n− 1) sphere and may be
written as

Vn−1 =
2πn/2

Γ(n/2)
. (3.11)

The metric function f(r) in Eq. (3.5) can be rewritten as[102]

f(r) = k +
r2

α′

(
1− χ(r)

1
3

)
(3.12)

where

χ(r) = 1 +
3α′m

r6
− 2α′b2

5

[
1−

√
1 + η − Λ

2b2
+

5η

4
H (η)

]
. (3.13)

3.2.2 Thermodynamic quantities

In the previous Chapter 2 the importance of various thermodynamic quantities in
the study of thermodynamic properties of black holes were established. In this
chapter we also intend to discuss various thermodynamic aspects of a black hole with
non-linear corrections. Thus, it is necessary to compute important thermodynamic
quantities for the LBI-AdS black hole whose behavior (at the critical point(s) of
phase transition) will be studied in this chapter.

To begin with, the quasilocal energy M of asymptotically AdS black holes may be
obtained by using the counterterm method which is indeed inspired by the AdS/CFT
correspondence[170, 171]. This method was applied in Lovelock gravity to compute
the associated conserved quantities[101, 102, 103, 104, 182]. However, for the asymp-
totically AdS solutions of the third order Lovelock black holes the action may be
written as[102, 103, 182]

A = I +
1

8π

∫
∂M

dnx
√
|γ|
(
I 1
b + α2I

2
b + α3I

3
b

)
︸ ︷︷ ︸

boundary terms

+
1

8π

∫
∂M

dnx
√
|γ|
(n− 1

L

)
︸ ︷︷ ︸

counterterm

,

(3.14)
where γ is the determinant of the induced metric γab on the time-like boundary ∂M
of the space-time manifold M . The quantity L is a new scale length factor given
by

L =
15
√
α′(1− λ)

5 + 9α′ − λ2 − 4λ
, (3.15)

where

λ =
(

1− 3α′
) 1

3
. (3.16)
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The boundary terms in Eq. (3.14) are chosen such that the action possesses well
defined variational principle, whereas, the counterterm makes the action and the
associated conserved quantities finite. These terms can be identified as[102, 103, 182]

I 1
b = K (3.17)

I 2
b = 2

(
J − 2Ḡ1

abK
ab
)

(3.18)

I 3
b = 3

(
P − 2Ḡ2

abK
ab − 12R̄abJ

ab + 2R̄J

− 4KR̄abcdK
acKbd − 8KR̄abcdK

acKb
eK

ed
)
. (3.19)

Here K is the trace of the extrinsic curvature Kab. In Eq. (3.18) Ḡ1
ab is the Einstein

tensor for γab in n-dimensions and J is the trace of the following tensor:

Jab =
1

3

(
2KKacK

c
b +KcdK

cdKab − 2KacK
cdKdb −K2Kab

)
. (3.20)

In Eq. (3.19) Ḡ2
ab is the second order Lovelock tensor for γab in n-dimensions which

is given by

Ḡ2
ab = 2

(
R̄acdeR̄

cde
b − 2R̄afbcR̄

fc − 2R̄acR̄
c
b + R̄R̄ab

)
−L2(γ)γab, (3.21)

whereas, P is the trace of

Pab =
1

5

([
K4 − 6K2KcdKcd + 8KKcdK

d
eK

ec − 6KcdK
deKefK

fc + 3
(
KcdK

cd
)2]

Kab

−
(

4K3 − 12KKedK
ed + 8KdeK

e
fK

fd
)
KacK

c
b − 24KKacK

cdKdeK
e
b

+
(

12K2 − 12KefK
ef
)
KacK

cdKdb + 24KacKcdKdeK
efKfb

)
. (3.22)

Next, using the method prescribed in Ref.[75], we obtain the divergence-free
energy-momentum tensor as[102, 103, 182]

T ab =
1

8π

[(
Kab−Kγab

)
+2α2

(
3Jab−Jγab

)
+3α3

(
5P ab−Pγab

)
+
n− 1

L
γab
]
. (3.23)

The first three terms of Eq. (3.23) result from the variation of the boundary
terms of Eq. (3.14) with respect to the induced metric γab, whereas, the last term is
obtained by considering the variation of the counterterm of Eq. (3.14) with respect
to γab.

For any space-like surface B in ∂M which has the metric σij we can write the
boundary metric in the following form[75, 102, 103, 182]:

γabdx
adxb = −N2dt2 + σij

(
dωi + V idt

) (
dωj + V jdt

)
, (3.24)
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where ωi are coordinates on B, N and V i are the lapse function and the shift vector,
respectively. For any Killing vector field ξ on the the space-like boundary B in ∂M ,
we may write the conserved quantities associated with the energy momentum tensor
(T ab) as[75, 102, 103, 182]

Qξ =

∫
B

dn−1ω
√
σ naξbTab (3.25)

where σ is the determinant of the metric σij on B, na is the time-like unit normal to

B, and ξb
(

=
∂

∂t

)
is the time-like Killing vector field. For the metric Eq. (3.5) we

can write na = (1/
√
f(r), 0, 0, 0, ...), ξa = (1, 0, 0, ....), and Kab = −γma ∇mτb, where

τa = (0, f(r), 0, ....) is the space-like unit normal to the boundary.
With these values of na and ξa the only nonvanishing component of Tab becomes

T00. Hence, Qξ corresponds to the quasilocal energy M of the black hole. Thus,
from Eq. (3.25) we obtain the expression for the quasilocal energy of the black hole
as

M =

∫
B

dn−1ω
√
σ n0ξ0T00. (3.26)

Using Eqs. (3.12) and (3.23), Eq. (3.26) can be computed as

M
∣∣∣
n=6

=
Vn−1

16π
(n− 1)m

∣∣∣
n=6

=
5π2

16
m, (3.27)

where the constant m is expressed as the real root of the equation

f(r = r+) = 0. (3.28)

Using Eq. (3.11) and substituting m from Eq. (3.28) we finally obtain from Eq. (3.27)

M =
5π2

16

[
k3α′2

3
+ kr4

+ + k2α′r2
+ +

2b2r6
+

15

(
1−

√
1 + η+ −

Λ

2b2
+

20Q2

b2π4r10
+

H (η+)

)]
.

(3.29)

The electrostatic potential difference between the black hole horizon and the
infinity may be defined as[102]

Φ =

√
(n− 1)

2(n− 2)

q

rn−2
+

H (η+)

=
Q

π2r4
+

H (η+) (for n = 6) (3.30)

where

η+ =
16Q2

b2π4r10
+

. (3.31)
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It is to be noted that in obtaining Eq. (3.31) we have used Eq. (3.10).
Following the method discussed in Chapter 2 (see Section 2.3.2, Eq. (2.10)), the

Hawking temperature of the third order LBI-AdS black hole can be obtained as

T =
10kr4

+ + 5kα′r2
+ + 2b2r6

+

(
1−

√
1 + 16Q2

b2π4r10
+

)
− Λr6

+

10πr+(r2
+ + kα′)2

. (3.32)

In order to calculate the entropy of the third order LBI-AdS black hole we make
use of the first law of black hole thermodynamics[59]:

dM = TdS + ΦdQ. (3.33)

In fact, it has been found that the thermodynamic quantities (e.g., entropy, tem-
perature, quasilocal energy, etc.) of the LBI-AdS black holes satisfy the first law of
black hole mechanics[94, 101, 102, 103, 104].

Using Eq. (3.33) we obtain the entropy of the black hole as,

S =

∫ r+

0

1

T

(
∂M

∂r+

)
Q

dr+

=
π3

4

(
r5

+ +
10kα′r3

+

3
+ 5k2α′2r+

)
(3.34)

where we have used Eqs.(3.29) and (3.32). Interestingly, identical expression for
the entropy can be obtained by using somewhat different approach[61]-[65]. In this
approach, in an arbitrary spatial dimension n, the expression for the Wald entropy
for higher curvature black holes is written as

S =
1

4

[n−2
2

]∑
j=1

jαj

∫
B

dn−1ω
√
|σ|Lj−1(σ)

=
1

4

∫
B

dn−1ω
√
|σ|
(

1 + 2α2R̃ + 3α3(R̃abcdR̃
abcd − 4R̃abR̃

ab + R̄2)
)

=
Vn−1

4

[
r4

+ +
2(n− 1)

(n− 3)
kα′r2

+ +
(n− 1)

(n− 5)
k2α′2

]
rn−5

+ , (3.35)

where Lj(σ) is the jth order Lovelock Lagrangian of σij and the tilde denotes the
corresponding quantities for the induced metric σij. If we put n = 6 in Eq. (3.35)
we get back the expression of Eq. (3.34). At this stage it is worth mentioning that
the entropy of black holes both in the usual Einstein gravity and in higher curvature
gravity can be obtained by using the approach of Refs.[66, 67] and [68], respectively.
The expression for the entropy of the third order Lovelock black hole as given by
Eq. (3.34) is the same as that of Ref.[68]. Thus, we may infer that the entropy of the
black hole obtained from the first law of black hole mechanics is indeed the Wald
entropy.
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Let us discuss the limit α′ → 0. In this limit the corresponding expression for
the Hawking temperature and entropy of a (6 + 1)-dimensional Born-Infeld AdS
(BI-AdS) black hole can be recovered from Eq. (3.32) and Eq. (3.34) as[167]

TBI−AdS =
1

4π

[
4k

r+

+
4b2r+

5

(
1−

√
1 +

Q2

b2r4
+

)
− 2Λr+

5

]
, (3.36)

S =
π3

4
r5

+, (3.37)

respectively.
From Eq. (3.34) (or Eq. (3.35)) we find that the entropy is not proportional to

the one-fourth of the horizon area as in the case of the black holes in the Einstein
gravity. In fact, this is one of the main features of the higher curvature black holes
− the violation of the usual area law of black holes in Einstein gravity[19].

In our study of critical phenomena we will be mainly concerned about the spher-
ically symmetric space-time. In this regard we will always take the value of k to
be +1. Substituting k = 1 in Eqs.(3.29), (3.32) and (3.34) we finally obtain the
expressions for the quasilocal energy, the Hawking temperature and the entropy of
the third order LBI-AdS black hole as

M =
5π2

16

[
α′2

3
+ r4

+ + α′r2
+ +

2b2r6
+

15

(
1−

√
1 + η+ −

Λ

2b2
+

20Q2

b2π4r10
+

H (η+)

)]
,

(3.38)

T =
10r4

+ + 5α′r2
+ + 2b2r6

+

(
1−

√
1 + 16Q2

b2π4r10
+

)
− Λr6

+

10πr+(r2
+ + α′)2

, (3.39)

S =
π3

4

(
r5

+ +
10α′r3

+

3
+ 5α′2r+

)
. (3.40)

3.3 Phase structure and stability of third order

LBI-AdS black hole

In this section we aim to discuss the nature of phase transition and stability of
the third order LBI-AdS black hole. A powerful method, based on the Ehrenfest’s
scheme of ordinary thermodynamics, was introduced by the authors of Ref.[115] in
order to determine the nature of phase transition in black holes. Using this analytic
method phase transition phenomena in various AdS black holes were explored[115]-
[120], and this was discussed elaborately in the previous Chapter 2 based on Ref.[120].
Phase transition in higher dimensional AdS black holes has been discussed in Ref.[119]
as well.

In this work we qualitatively discuss the phase transition phenomena in the LBI-
AdS black hole following the arguments presented in the above mentioned works.
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However, in this work, the analysis presented in Refs.[115]-[120] has been extended
to include higher curvature terms for the first time taking the particular example of
LBI-AdS black hole. Nevertheless, we will analyze the phase transition phenomena
in this black hole only qualitatively, no quantitative discussion will be presented in
this regard.

To analyze the nature of phase transition we plot the Hawking temperature
(Eq. (3.39)) as a function of horizon radius r+.
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Figure 3.1: Plot of Hawking temperature
(T ) against horizon radius (r+), for α′ =
0.5, Q = 0.50 and b = 10.

2 4 6 8 10 12 14

r+

0.08

0.10

0.12

T

Figure 3.2: Plot of Hawking temperature
(T ) against horizon radius (r+), for α′ =
1.0, Q = 0.50 and b = 10.

From these figures it is evident that there is no discontinuity in the temperature
of the black hole. This rules out the possibility of first order phase transition[115]-
[120] (see also Chapter 2, Section 2.3.2).

In order to see whether there is any higher order phase transition, we need to
calculate the specific heat of the black hole. In the canonical ensemble framework
the specific heat at constant charge, CQ, (This is analogous to the specific heat
heat at constant volume (CV ) in the ordinary thermodynamics.) can be calculated
as[166, 167]

CQ = T

(
∂S

∂T

)
Q

= T
(∂S/∂r+)Q
(∂T/∂r+)Q

=
N (r+, Q)

D(r+, Q)
(3.41)

where

N (r+, Q) =
5

4
π7r5

+

(
r2

+ + α′
)3

√
1 +

16Q2

b2π4r10
+

[
10r2

+ + 5α′ + 2b2r4
+

(
1−

√
1 +

16Q2

b2π4r10
+

)

− Λr4
+

]
, (3.42)
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D(r+, Q) = 128Q2 +

[
15π4r6

+α
′ + 5π4r4

+α
′2 − Λπ4r10

+ − 5π4r8
+(2 + α′Λ)

]
√

1 +
16Q2

b2π4r10
+

−

(
2b2π4r10

+ + 10b2π4r8
+α
′

)(
1−

√
1 +

16Q2

b2π4r10
+

)
.

(3.43)

In the derivation of Eq. (3.41) we have used Eqs. (3.39) and (3.40).
We plot the specific heat (CQ) as a function of the horizon radius (r+) in Fig. 3.3-

Fig. 3.10 below. Here we have zoomed in the plots near the two critical points ri
(i = 1, 2) separately for convenience.
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Figure 3.3: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 0.5,
Q = 15 and b = 0.60 at the critical point
r1.
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Figure 3.4: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 0.5,
Q = 15 and b = 0.60 at the critical point
r2.
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Figure 3.5: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 0.5,
Q = 0.50 and b = 10 at the critical point
r1.
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Figure 3.6: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 0.5,
Q = 0.50 and b = 10 at the critical point
r2.
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Figure 3.7: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 1.0,
Q = 5 and b = 0.5 at the critical point r1.
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Figure 3.8: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 1.0,
Q = 5 and b = 0.5 at the critical point r2.
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Figure 3.9: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 1.0,
Q = 0.05 and b = 0.05 at the critical point
r1.

r2

Ph aseII

Ph aseIII

7.2 7.4 7.6 7.8 8.0 8.2 8.4

r+

- 1.0 ´ 10
8

- 5.0 ´ 10
7

5.0 ´ 10
7

1.0 ´ 10
8

1.5´ 10
8

cQ

Figure 3.10: Plot of specific heat (CQ)
against horizon radius (r+), for α′ = 1.0,
Q = 0.05 and b = 0.05 at the critical point
r2.

The numerical values of the roots of Eq. (3.41) are given in Table 3.1a and
Table 3.1b. For convenience we have written the real roots of Eq. (3.41) only.
From our analysis it is observed that the specific heat always possesses simple poles.
Moreover, there are two real positive roots (ri, i = 1, 2) of the denominator of CQ
for different values of the parameters b, Q and α′. Also, from the CQ− r+ plots it is
observed that the specific heat suffers discontinuity at the critical points ri (i = 1, 2).
This property of CQ allows us to conclude that at the critical points there is indeed
a continuous higher order phase transition[166, 167].

Let us now see whether there is any bound in the values of the parameters b,Q
and α′. At this point it must be stressed that a bound in the parameter values (b,Q)
for the Born-Infeld-AdS black holes in (3+1)-dimensions was found earlier[110, 166].
Interestingly, this bound is removed if we consider space-time dimensions greater
than four[167]. Thus, it will be very much interesting to check whether the LBI-
AdS black hole, which is indeed a (6 + 1)-dimensional black hole, possess similar
features. In order to do so, we will consider the extremal LBI-AdS black hole. In

this case both f(r) and
df

dr
vanish at the degenerate horizon re [110, 166, 167]. The
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Table 3.1a: Real roots of Eq. (3.41) for α′ = 0.5 and L = 10

Q b r1 r2 r3 r4

15 0.6 1.59399 7.96087 -7.96087 -1.59399
8 0.2 1.18048 7.96088 -7.96088 -1.18048
5 0.5 1.25190 7.96088 -7.96088 -1.25190

0.8 20 1.01695 7.96088 -7.96088 -1.01695
0.3 15 0.975037 7.96088 -7.96088 -0.975037
0.5 10 0.989576 7.96088 -7.96088 -0.989576
0.5 1 0.989049 7.96088 -7.96088 -0.989049
0.5 0.5 0.987609 7.96088 -7.96088 -0.987609
0.05 0.05 0.965701 7.96088 -7.96088 -0.965701

Table 3.1b: Real roots of Eq. (3.41) for α′ = 1.0 and L = 10

Q b r1 r2 r3 r4

15 0.6 1.76824 7.74534 -7.74534 -1.76824
8 0.2 1.53178 7.74535 -7.74535 -1.53178
5 0.5 1.51668 7.74535 -7.74535 -1.51668

0.8 20 1.40553 7.74535 -7.74535 -1.40553
0.3 15 1.40071 7.74535 -7.74535 -1.40071
0.5 10 1.40214 7.74535 -7.74535 -1.40214
0.5 1 1.40214 7.74535 -7.74535 -1.40214
0.5 0.5 1.40213 7.74535 -7.74535 -1.40213
0.05 0.05 1.39992 7.74535 -7.74535 -1.39992

above two conditions for extremality result the following equation:

10r4
e + 5α′r2

e + 2b2r6
e

(
1−

√
1 +

16Q2

b2π4r10
e

)
− Λr6

e = 0. (3.44)

In Table 3.2a and 3.2b we give the numerical solutions of Eq. (3.44) for different
choices of the values of the parameters b and Q for fixed values of α′. From these
analysis we observe that for arbitrary choices of the parameters b and Q we always
obtain atleast one real positive root of Eq. (3.44). This implies that there exists a
smooth extremal limit for arbitrary b and Q, and there is no bound on the parameter
space for a particular value of α′. Thus, the result obtained here (regarding the
bound in the parameter values) is in good agreement with that obtained in Ref.[167].

Let us now analyze the phase structure and thermodynamic stability of the
third order LBI-AdS black hole. If we proceed in the same line of analysis as of
Chapter 2, the behavior of the specific heat (CQ) at the critical points (Fig. 3.3-
Fig. 3.10) classifies the following three phases of the black hole, namely, Phase I
(0 < r+ < r1), Phase II (r1 < r+ < r2) and Phase III (r+ > r2). Since the higher
mass black hole possesses larger entropy/horizon radius, there is a phase transition
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Table 3.2a: Roots of Eq. (3.44) for α′ = 0.5 and L = 10

Q b r2
e1 r2

e2 r2
e3,e4 r2

e5

15 0.6 -66.4157 - - +0.632734
8 0.2 -66.4157 - - +0.121590
5 0.5 -66.4157 - - +0.200244

0.8 20 -66.4157 -0.408088 -0.05881±i0.304681 +0.268514
0.3 15 -66.4157 -0.304225 -0.0517567±i0.175488 +0.145685
0.5 10 -66.4157 -0.349764 -0.0593449±i0.240144 +0.192519
0.5 1 -66.4157 - - +0.0221585
0.5 0.5 -66.4157 - - +0.00625335
0.05 0.05 -66.4157 - - +6.57019×10−7

Table 3.2b: Roots of Eq. (3.44) for α′ = 1.0 and L = 10

Q b r2
e1 r2

e2 r2
e3,e4 r2

e5

15 0.6 -66.1628 - - +0.50473
8 0.2 -66.1628 - - +0.0546589
5 0.5 -66.1628 - - +0.110054

0.8 20 -66.1629 -0.563564 -0.0913395±i0.266887 +0.236186
0.3 15 -66.1629 -0.514815 -0.0584676±i0.14609 +0.116834
0.5 10 -66.1629 -0.531635 -0.0760937±i0.210702 +0.155024
0.5 1 -66.1629 -0.542417 - +0.00640486
0.5 0.5 -66.1629 - - +0.00163189
0.05 0.05 -66.1629 - - +1.64256×10−7

at r1 from smaller mass black hole (Phase I) to intermediate (higher mass) black
hole (Phase II). The critical point r2 corresponds to a phase transition from an
intermediate (higher mass) black hole (Phase II) to a larger mass black hole (Phase
III). Moreover, from the CQ− r+ plots we note that the specific heat CQ is positive
for Phase I and Phase III whereas it is negative for Phase II. Therefore Phase I and
Phase III correspond to thermodynamically stable phase (CQ > 0) whereas Phase
II corresponds to thermodynamically unstable phase (CQ < 0).

We can further extend our stability analysis by considering the free energy of
the LBI-AdS black hole. The free energy plays an important role in the theory of
phase transition as well as in critical phenomena (Section 3.4). We may define the
free energy of the third order LBI-AdS black hole as

F (r+, Q) = M(r+, Q)− TS. (3.45)
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Using Eqs.(3.38), (3.39), and (3.40) we can write Eq. (3.45) as

F =
5π2

16

[
α′2

3
+ r4

+ + α′r2
+ +

2b2r6
+

15

(
1−

√
1 +

16Q2

b2π4r10
+

− Λ

2b2
+

20Q2

b2π4r10
+

H

(
1

2
,
2

5
,
7

5
,− 16Q2

b2π4r10
+

))]
−
π2
(
r5

+ +
10α′r3

+

3
+ 5α′2r+

)
40r+(r2

+ + α′)2

[
10r4

+ + 5α′r2
+

+ 2b2r6
+

(
1−

√
1 +

16Q2

b2π4r10
+

)
− Λr6

+

]
. (3.46)

In Figs. 3.11, 3.12, 3.13, and 3.14 we have given the plots of the free energy (F )
of the black hole with the radius of the outer horizon r+. The free energy (F ) has
a minima F = Fm at r+ = rm. This point of minimum free energy is exactly the
same as the first critical point r+ = r1 where the black hole shifts from a stable to
an unstable phase. On the other hand F has a maxima F = F0 at r+ = r0. The
point at which F reaches its maximum value, is identical with the second critical
point r+ = r2 where the black hole changes from unstable to stable phase. We
can further divide the F − r+ plot into three distinct regions. In the first region
r′1 < r+ < rm the negative free energy decreases until it reaches the minimum value
(Fm) at r+ = rm. This region corresponds to the stable phase (Phase I: CQ > 0)
of the black hole. The free energy changes its slope at r+ = rm and continues to
increase in the second region rm < r+ < r0 approaching towards the maximum value
(F0) at r+ = r0. This region corresponds to the Phase II of the CQ− r+ plot where
the black hole becomes unstable (CQ < 0). The free energy changes its slope once
again at r+ = r0 and decreases to zero at r+ = r′2 and finally becomes negative for
r+ > r′2. This region of the F − r+ plot corresponds to the Phase III of the CQ− r+

plot where the black hole finally becomes stable (CQ > 0).
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Figure 3.11: Plot of free energy(F )
against horizon radius (r+), for α′ = 0.50,
Q = 0.50 and b = 10.
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Figure 3.12: Plot of free energy(F )
against horizon radius (r+), for α′ = 0.50,
Q = 0.50 and b = 10.
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Figure 3.13: Plot of free energy(F )
against horizon radius (r+), for α′ = 1.0,
Q = 5 and b = 0.5.
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Figure 3.14: Plot of free energy(F )
against horizon radius (r+), for α′ = 1.0,
Q = 5 and b = 0.5.

3.4 Critical exponents and scaling hypothesis

In ordinary thermodynamics, the theory of phase transition plays a crucial role to
understand the behavior of a thermodynamic system. The behavior of thermody-
namic quantities near the critical point(s) of phase transition gives a considerable
amount of information about the system. The behavior of a thermodynamic system
near the critical point(s) is usually studied by means of a set of indices known as
the critical exponents[150, 151, 152]. These are generally denoted by a set of Greek
letters : α, β, γ, δ, φ, ψ, η, ν. The critical exponents describe the nature of singu-
larities in various measurable thermodynamic quantities near the critical point(s).

The sole purpose of the present section is to determine the first six static critical
exponents (α, β, γ, δ, φ, ψ). For this purpose we shall follow the method discussed
in Refs. [166]-[169]. Next, we discuss about the static scaling laws and static scaling
hypothesis. Finally, we determine the other two critical exponents (ν and η) from
two additional scaling laws.

3.4.1 Critical exponents

(1) Critical exponent α: In order to determine the critical exponent α which is
associated with the singularity of CQ near the critical points ri (i = 1, 2), we choose
a point in the infinitesimal neighborhood of ri as,

r+ = ri(1 + ∆), i = 1, 2, (3.47)

where |∆| << 1. Let us denote the temperature at the critical point by T (ri) and
define the quantity

ε =
T (r+)− T (ri)

T (ri)
(3.48)

such that |ε| << 1.
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We now Taylor expand T (r+) in the neighborhood of ri keeping the charge
constant (Q = Qc), which yields

T (r+) = T (ri)+

[(
∂T

∂r+

)
Q=Qc

]
r+=ri

(r+−ri)+
1

2

[(
∂2T

∂r2
+

)
Q=Qc

]
r+=ri

(r+−ri)2 + · · ·

(3.49)

Since the divergence of CQ results from the vanishing of
(
∂T
∂r+

)
Q

at the critical point

ri (Eq. (3.41)), we may write Eq. (3.49) as

T (r+) = T (ri) +
1

2

[(
∂2T

∂r2
+

)
Q=Qc

]
r+=ri

(r+ − ri)2, (3.50)

where we have neglected the higher order terms in Eq. (3.49).
Using Eqs. (6.54) and (3.48) we can finally write Eq. (3.50) as

∆ =
ε1/2

Γ
1/2
i

, (3.51)

where

Γi =
r2
i

2T (ri)

[(
∂2T

∂r2
+

)
Q=Qc

]
r+=ri

. (3.52)

The detailed expression of Γi is very much cumbersome and we shall not write
it for the present work.

If we examine the T − r+ plots (Fig. 3.1 & Fig. 3.2) we observe that, near the
critical point r+ = r1 (which corresponds to the ‘hump’) T (r+) < T (r1) so that
ε < 0, and on the contrary, near the critical point r+ = r2 (which corresponds to
the ‘dip’) T (r+) > T (r2) implying ε > 0.

Substituting Eq. (3.47) into Eq. (3.41) we can write the singular part of CQ as

CQ =
N ′(ri, Qc)

∆ ·D ′(ri, Qc)
(3.53)

where N ′(ri, Qc) is the value of the numerator of CQ (Eq. (3.42)) at the critical
point r+ = ri and critical charge Q = Qc. The expression for D ′(ri, Qc) is given by

D ′(ri, Qc) = D ′1(ri, Qc) + D ′2(ri, Qc) + D ′3(ri, Qc) (3.54)

where

D ′1(ri, Qc) = 10π4r4
i

√
1 +

16Q2
c

b2π4r10
i

[(
2α′2 + 2b2r6

i + 8b2r4
iα
′
)

−
(

Λr6
i + 9α′r2

i + 4(2 + Λα′)r4
i

)]
, (3.55)
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D ′2(ri, Qc) = −80Q2
c

b2r2
i

[
15α′

r2
i

+
5α′2

r4
i

− Λr2
i − 5(2 + Λα′)

]
, (3.56)

D ′3(ri, Qc) = −20b2π4r8
i

[
r2
i

(
1 +

8Q2
c

b2π4r10
i

)
+ 4α′

(
1 +

10Q2
c

b2π4r10
i

)]
. (3.57)

It is to be noted that while expanding the denominator of CQ we have retained
the terms which are linear in ∆, and all other higher order terms of ∆ have been
neglected.

Using Eq. (3.53) we may summarize the critical behavior of CQ near the critical
points (r1 and r2) as follows:

CQ ∼


[

Ai

(−ε)1/2

]
ri=r1

ε < 0[
Ai

(+ε)1/2

]
ri=r2

ε > 0,

(3.58)

where

Ai =
Γ

1/2
i N ′(ri, Qc)

D ′(ri, Qc)
. (3.59)

We can combine the rhs of Eq. (3.58) into a single expression, which describes
the singular nature of CQ near the critical point ri, yielding

CQ =
Ai

|ε|1/2

=
AiT

1/2
i

|T − Ti|1/2
, (3.60)

where we have used Eq. (3.48). Here T and Ti are the abbreviations of T (r+) and
T (ri), respectively.

We can now compare Eq. (3.60) with the standard form

CQ ∼ |T − Ti|−α (3.61)

which gives α =
1

2
.

(2) Critical exponent β : The critical exponent β is related to the electric
potential at infinity (Φ) by the relation

Φ(r+)− Φ(ri) ∼ |T − Ti|β, (3.62)

where the charge (Q) is kept constant.
Near the critical point r+ = ri the Taylor expansion of Φ(r+) yields

Φ(r+) = Φ(ri) +

[(
∂Φ

∂r+

)
Q=Qc

]
r+=ri

(r+ − ri) + · · · (3.63)
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Neglecting the higher order terms and using Eqs. (3.30) and (3.51) we may
rewrite Eq. (3.63) as,

Φ(r+)− Φ(ri) = −

 4Qc

π2r4
iΓ

1/2
i T

1/2
i

√
1 + 16Q2

c

b2π4r10
i

 |T − Ti|1/2. (3.64)

Comparing Eq. (3.64) with Eq. (3.62) we finally obtain β =
1

2
.

(3) Critical exponent γ: Let us now determine the critical exponent γ which
is associated with the singularity of the inverse of the isothermal compressibility
(κ−1

T ) at constant charge Q = Qc near the critical point r+ = ri as

κ−1
T ∼ |T − Ti|

−γ. (3.65)

In order to calculate κ−1
T we use the standard thermodynamic definition

κ−1
T = Q

(
∂Φ

∂Q

)
T

= −Q
(
∂Φ

∂T

)
Q

(
∂T

∂Q

)
Φ

(3.66)

where in the last line of Eq. (3.66) we have used the identity(
∂Φ

∂T

)
Q

(
∂T

∂Q

)
Φ

(
∂Q

∂Φ

)
T

= −1. (3.67)

Using Eqs. (3.30) and (3.39) we can write Eq. (3.66) as

κ−1
T =

Ω(r+, Q)

D(r+, Q)
, (3.68)

where D(r+, Q) is the denominator identically equal to Eq. (3.43) (the denominator
of CQ) and the expression for Ω(r+, Q) may be written as

Ω(r+, Q) =
Q

5π2r4
+

[
128Q2 +

(
15π4r6

+α + 5π4r4
+α

2 − Λπ4r10
+ − 5π4r8

+(2 + αΛ)
)

√
1 +

16Q2

b2π4r10
+

−
(

2b2π4r10
+ + 10b2π4r8

+α
)(

1−

√
1 +

16Q2

b2π4r10
+

)

H

(
1

2
,
2

5
,
7

5
,− 16Q2

b2π4r10
+

)]
− Σ(r+, Q), (3.69)
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where

Σ(r+, Q) =
4Q

5

[
2b2π2r4

+

(
r2

+ + 5α
)√

1 +
16Q2

b2π4r10
+

+ π2

(
− 15r2

+α− 5α2 + r6
+

(
Λ− 2b2

)
+ 5r4

+

(
2 + Λα− 2b2α

))]
. (3.70)

From Eq. (3.68) we observe that κ−1
T possesses simple poles. Moreover, κ−1

T and
CQ exhibit common singularities.

Now, our interest is in the behavior of κ−1
T near the critical point r+ = ri. In

order to do so we substitute Eq. (3.47) into Eq. (3.68). The resulting equation for
the singular part of κ−1

T may be written as,

κ−1
T =

Ω′(ri, Qc)

∆ ·D ′(ri, Qc)
. (3.71)

In Eq. (3.71), Ω′(ri, Qc) is the value of the numerator of κ−1
T (Eq. (3.69)) at the

critical point r+ = ri and critical charge Q = Qc, whereas D ′(ri, Qc) was identified
earlier as Eq. (3.54).

Substituting Eq. (3.51) into Eq. (3.71) we may express the singular nature of
κ−1
T near the critical points (r1 and r2) as

κ−1
T '


[

Bi

(−ε)1/2

]
ri=r1

ε < 0[
Bi

(+ε)1/2

]
ri=r2

ε > 0,

(3.72)

where

Bi =
Γ

1/2
i Ω′(ri, Qc)

D ′(ri, Qc)
.. (3.73)

Combining the rhs of Eq. (3.72) into a single expression as before, we can express
the singular behavior of κ−1

T near the critical point ri as

κ−1
T =

Bi

|ε|1/2

=
BiT

1/2
i

|T − Ti|1/2
. (3.74)

Comparing Eq. (3.74) with Eq. (3.65) we find γ =
1

2
.

(4) Critical exponent δ: The critical exponent δ is associated with the elec-
trostatic potential (Φ) for the fixed value T = Ti of temperature. The relation can
be written as

Φ(r+)− Φ(ri) ∼ |Q−Qi|1/δ. (3.75)
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In this relation Qi is the value of charge (Q) at the critical point ri. In order to
obtain δ we first Taylor expand Q(r+) around the critical point r+ = ri. This yields

Q(r+) = Q(ri)+

[(
∂Q

∂r+

)
T=Ti

]
r+=ri

(r+−ri)+
1

2

[(
∂2Q

∂r2
+

)
T=Ti

]
r+=ri

(r+−ri)2 + .....

(3.76)
Neglecting the higher order terms we can write Eq. (3.76) as

Q(r+)−Q(ri) =
1

2

[(
∂2Q

∂r2
+

)
T

]
r+=ri

(r+ − ri)2. (3.77)

Note that, here we have used the standard thermodynamic identity[(
∂Q

∂r+

)
T

]
r+=ri

[(
∂r+

∂T

)
Q

]
r+=ri

(
∂T

∂Q

)
r+=ri

= −1 (3.78)

and considered the fact that at the critical point r+ = ri,

(
∂T

∂r+

)
Q

vanishes.

Let us now define a quantity

Υ =
Q(r+)−Qi

Qi

=
Q−Qi

Qi

, (3.79)

where |Υ| << 1. Here we denote Q(r+) and Q(ri) by Q and Qi, respectively.
Using Eqs. (3.47) and (3.79) we obtain from Eq. (3.77)

∆ =
Υ1/2

Ψ
1/2
i

[
2Qi

r2
i

]1/2

, (3.80)

where

Ψi =

[(
∂2Q

∂r2
+

)
T

]
r+=ri

. (3.81)

The expression for Ψi is very much cumbersome, and we shall not write it here.
We now consider the functional relation

Φ = Φ(r+, Q) (3.82)

from which we may write[(
∂Φ

∂r+

)
T

]
r+=ri

=

[(
∂Φ

∂r+

)
Q

]
r+=ri

+

[(
∂Q

∂r+

)
T

]
r+=ri

(
∂Φ

∂Q

)
r+=ri

. (3.83)

Using Eq. (3.78) we can rewrite Eq. (3.83) as[(
∂Φ

∂r+

)
T=Ti

]
r+=ri

=

[(
∂Φ

∂r+

)
Q=Qc

]
r+=ri

. (3.84)



3.4. Critical exponents and scaling hypothesis 65

Now the Taylor expansion of Φ at constant temperature around r+ = ri yields

Φ(r+) = Φ(ri) +

[(
∂Φ

∂r+

)
T=Ti

]
r+=ri

(r+ − ri), (3.85)

where we have neglected all the higher order terms.
Finally using Eqs.(3.80), (3.84), and (3.30) we may write Eq. (3.85) as,

Φ(r+)− Φ(ri) =

 −4Qc

π2r5
i

√
1 + 16Q2

c

b2π4r10
i

( 2

Ψi

) 1
2

|Q−Qi|
1
2 . (3.86)

Comparing Eqs. (3.75) and (3.86) we find that δ = 2.

(5) Critical exponent φ: The critical exponent φ is associated with the di-
vergence of the specific heat at constant charge (CQ) at the critical point r+ = ri as

CQ ∼ |Q−Qi|−φ. (3.87)

From eqs.(3.53) and (3.60) we note that

CQ ∼
1

∆
(3.88)

which may further be written as,

CQ ∼
1

|Q−Qi|1/2
, (3.89)

where we have used Eq. (3.80).

Comparison of Eq. (3.89) with Eq. (3.87) yields φ =
1

2
.

(6) Critical exponent ψ: In order to calculate the critical exponent ψ, which
is related to the entropy of the third order LBI-AdS black hole, we Taylor expand
the entropy (S(r+)) around the critical point r+ = ri. This gives

S(r+) = S(ri) +

[(
∂S

∂r+

)]
r+=ri

(r+ − ri) + · · · (3.90)

If we now neglect all the higher order terms and use eqs.(3.40), (3.47), and (3.80),
we can write Eq. (3.90) as

S(r+)− S(ri) =
5π3

4

(
r4
i + 2α′r2

i + α′2
)( 2

Ψi

)1/2

|Q−Qi|1/2. (3.91)

Comparing Eq. (3.91) with the standard relation

S(r+)− S(ri) ∼ |Q−Qc|ψ, (3.92)
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we finally obtain ψ =
1

2
.

In the following Table 3.3 we write all the six critical exponents obtained from
our analysis in a tabular form. For comparison we also give the critical exponents
associated with some well known systems.

Table 3.3: Critical exponents of different systems
Critical LBI-AdS CrBr3

∗ 2D van der Waals’s
exponents black hole Ising model∗ system‡

α 0.5 0.05 0 0
β 0.5 0.368 0.125 0.5
γ 0.5 1.215 1.7 1.0
δ 2.0 4.28 15 3.0
ψ 0.5 0.60 - -
φ 0.5 0.03 - -

(∗: these are the non-mean field values.)
(‡: these values are taken from Ref. [163].)

3.4.2 Scaling laws and scaling hypothesis

In order to complete our study of critical phenomena in LBI-AdS black hole, we
discuss the thermodynamic scaling laws and static scaling hypothesis for this black
hole. In standard thermodynamic systems the critical exponents are found to satisfy
some relations among themselves. These relations are called thermodynamic scaling
laws [150]-[152]. These scaling relations are written as

α + 2β + γ = 2

α + β(δ + 1) = 2

φ+ 2ψ − 1

δ
= 1

β(δ − 1) = γ

(2− α)(δ − 1) = γ(1 + δ)

1 + (2− α)(δψ − 1) = (1− α)δ. (3.93)

From the values of the critical exponents obtained in our analysis (see Sec-
tion 3.4.1, Table 3.3) it is easy to check that these scaling relations (Eq. (3.93))
are indeed satisfied for the LBI-AdS black hole.

We are now in a position to explore the static scaling hypothesis [151]-[153]
for this black hole. Since we are working in the canonical ensemble framework, the
thermodynamic potential of interest is the Helmhotz free energy, F (T,Q) = M−TS,
where the symbols have their usual meaning.
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Now the static scaling hypothesis states that, Close to the critical point the
singular part of the Helmhotz free energy is a generalized homogeneous function of
its variables [150]-[152].

This asserts that there exist two parameters aε and aΥ such that

F (λaεε, λaΥΥ) = λF (ε,Υ) (3.94)

for any arbitrary number λ.
In an attempt to find the values of the scaling parameters aε and aΥ, we Taylor

expand the Helmhotz free energy F (T,Q) near the critical point r+ = ri. The result
is the following:

F (T,Q) = F (T,Q)|r+=ri +

[(
∂F

∂T

)
Q

]
r+=ri

(T − Ti) +
1

2

[(
∂2F

∂T 2

)
Q

]
r+=ri

(T − Ti)2

+

[(
∂F

∂Q

)
T

]
r+=ri

(Q−Qi) +
1

2

[(
∂2F

∂Q2

)
T

]
r+=ri

(Q−Qi)
2

+

[(
∂2F

∂T∂Q

)]
r+=ri

(T − Ti)(Q−Qi) + · · · . (3.95)

From Eq. (3.95) we can identify the second derivatives of F as(
∂2F

∂T 2

)
Q

=
−CQ
T

, (3.96)(
∂2F

∂Q2

)
T

=
κ−1
T

Q
. (3.97)

Since both CQ and κ−1
T diverge at the critical point, these derivatives can be justified

as the singular parts of the free energy F .
Now, in the theory of critical phenomena we are mainly interested in the singular

part of the relevant thermodynamic quantities. Therefore, we sort out the singular
part of F (T,Q) from Eq. (3.95), which may be written as

Fs =
1

2

[(
∂2F

∂T 2

)
Q

]
r+=ri

(T − Ti)2 +
1

2

[(
∂2F

∂Q2

)
T

]
r+=ri

(Q−Qi)
2

=
−CQ
2Ti

(T − Ti)2 +
κ−1
T

2Qi

(Q−Qi)
2, (3.98)

where the subscript “s” denotes the singular part of the free energy F .
Using Eqs. (3.51), (3.60), (3.74), and (3.80) we may write the singular part of

the Helmhotz free energy (F ) as

Fs = σiε
3/2 + τiΥ

3/2 (3.99)
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where

σi =
−AiTi

2
and τi =

BiΨ
1/2
i Q

1/2
i ri

23/2Γ
1/2
i

. (3.100)

From Eqs. (3.94) and (3.99) we observe that

aε = aΥ =
2

3
. (3.101)

This is an interesting result in the sense that, in general, aε and aΥ are different
for a generalized homogeneous function (GHF), but in this particular model of the
black hole these two scaling parameters are indeed identical. With this result in hand
we can argue that the Helmhotz free energy is an usual homogeneous function for the
third order LBI-AdS black hole. Moreover, we can determine the critical exponents
(α, β, γ, δ, φ, ψ) once we calculate the scaling parameters. This is because these
critical exponents are related to the scaling parameters as[151, 152]

α = 2− 1

aε
, β =

1− aΥ

aε
,

γ =
2aΥ − 1

aε
, δ =

aΥ

1aΥ

,

φ =
2aε − 1

aΥ

, ψ =
1− aε
aΥ

. (3.102)

3.4.3 Additional exponents

There are two other critical exponents associated with the behavior of the correlation
function and correlation length of the system near the critical surface. We shall
denote these two critical exponents as η and ν, respectively. If G(~r+) and ξ are the
correlation function and the correlation length we can relate η and ν with them as

G(~r+) ∼ r2−n−η
+ (3.103)

and
ξ ∼ |T − Ti|−ν . (3.104)

For the time being we shall assume that the two additional scaling relations[151]

γ = ν(2− η) and (2− α) = νn (3.105)

hold for the third order LBI-AdS black hole. Using these two relations (Eq. (3.105))
and the values of α and γ, the exponents ν and η are found to be 1/4 and 0,
respectively.

Although we have calculated η and ν assuming the additional scaling relations
to be valid, it is not proven yet that these scaling relations are indeed valid for the
black holes. One may adapt different techniques to calculate η and ν, but till now no
considerable amount of progress has been made in this direction. One may compute
these two exponents directly from the correlation of scalar modes in the theory of
gravitation[165], but the present theories of critical phenomena in black holes are
far from complete.
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3.5 Conclusive remarks

In this chapter we have analyzed the critical phenomena in higher curvature charged
black holes in a canonical framework. For this purpose we have considered the third
order Lovelock-Born-Infeld-AdS (LBI-AdS) black holes in a spherically symmetric
space-time. We systematically derived the thermodynamic quantities for such black
holes. We have been able to show that some of the thermodynamic quantities (CQ,
κ−1
T ) diverge at the critical points. From the nature of the plots we have argued that

there is a higher order phase transition in this black hole. Although the analytic
estimation of the critical points has not been possible due to the complexity of the
relevant equations, we have determined the critical points numerically. However,
all the critical exponents have been calculated analytically near the critical points.
Unlike the AdS black holes in the Einstein gravity, one interesting property of the
higher curvature black holes is that the usual area law of entropy does not hold
for these black holes. One might then expect that the critical exponents may differ
form those for the AdS black holes in the Einstein gravity. But we have found
that all the critical exponents in the third order LBI-AdS black hole are indeed
identical with those obtained in Einstein as well as Horava-Lifshitz gravity[166,
167, 168]. From this observation we may conclude that these black holes belong
to the same universality class. Moreover, the critical exponents take the mean
field values. It is to be noted that these black holes have distinct set of critical
exponents which does not match with the critical exponents of any other known
thermodynamic systems. Another point that must be stressed is that the static
critical exponents are independent of the spatial dimensionality of the AdS space-
time. This suggests the mean field behavior in black holes as thermodynamic systems
and allows us to study the phase transition phenomena in the black holes. We
have also discussed the static scaling laws and static scaling hypothesis. The static
critical exponents are found to satisfy the static scaling laws near the critical points.
We have checked the consistency of the static scaling hypothesis. Apart from this,
we note that the two scaling parameters have identical values. This allows us to
conclude that the Helmhotz free energy is indeed a homogeneous function for this
type of black hole. We have determined the two other critical exponents ν and
η associated with the correlation length (ξ) and correlation function (G(~r+)) near
the critical surface assuming the validity of the additional scaling laws. The values

of these two exponents are found to be
1

4
and 0, respectively, in the six spatial

dimensions. Although the other six critical exponents are independent of the spatial
dimension of the system, these two exponents are very much dimension dependent.

In our analysis we have been able to resolve a number of vexing issues concern-
ing the critical phenomena in LBI-AdS black holes. But there still remains some
unsolved problems that lead us to make the following comments: First of all, we
have made a qualitative argument about the nature of the phase transition in this
black hole. One needs to go through detailed algebraic analysis in order to deter-
mine the true order of the phase transition[115]-[120]. Secondly, we have calculated
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the values of the exponents ν and η assuming that the additional scaling relations
hold for this black hole. But there is no evidence whether these two laws hold for
the black hole[166, 167, 168]. These scaling relations may or may not hold for the
black hole. The dimension dependence of these two exponents (ν and η) makes the
issue highly nontrivial in higher dimensions. A further attempt to determine η and
ν may be based on Ruppeiner’s prescription [129]-[135], where it is assumed that
the absolute value of the thermodynamic scalar curvature (|R|) is proportional to
the correlation volume ξn:

|R| ∼ ξn (3.106)

where n is the spatial dimension of the black hole. Now if we can calculate R using
the standard method[120],[129]-[135], we can easily determine ξ from Eq. (3.106).
Evaluating ξ around the critical point r+ = ri as before, we can determine ν directly.
It is then straight forward to calculate η by using (80). This alternative approach,
based on Ruppeiner’s prescription, to determine ν and η needs high mathematical
rigor and also the complexity in the determination of the scalar curvature (R) in
higher dimensions makes the issue even more challenging.

At this point we must mention that the studies of non-linear aspects of black holes
are not restricted within the context of classical gravity only, rather, it can further be
extended by considering examples from sectors which are relatively new in modern
high energy physics in which black holes are of significant importance in order to
answer several questions that are still enigmatic. The AdS/CFT correspondence is
one of them. This can describe aspects of certain strongly coupled field theories
much of which was not understood well due to the lack of theoretical tools. In the
remaining three chapters of the thesis we shall explore the non-linear aspects of
s-wave holographic superconductors which are one of the striking predictions of the
AdS/CFT dualities.



Chapter 4

Holographic s-wave
Superconductors with Born-Infeld
Correction

4.1 Overview

Superconductivity is one of the most surprising phenomena that has been observed
in modern physics. Since its discovery in 1911, it has been a promising direction
of research. In order to explain superconductivity Ginzburg and Landau proposed
a phenomenological model in which superconductivity was explained in terms of
a second order phase transition[201]. Latter on, in 1957, a microscopic theory of
superconductivity was put forward by Bardeen, Cooper and Schrieffer which was
found to be the exact description of weakly coupled superconductors[202]. However,
the discovery of high-Tc superconductors has imposed doubt on the generality of the
BCS theory for these are strongly interacting systems (e.g., cuprates, iron pnictides,
etc.), and the mechanism responsible for the high-Tc superconductivity can not be
explained in the framework of the BCS theory at all. Despite several attempts an
appreciable microscopic theory of high-Tc superconductors is still intangible.

However, very recently an attempt has been made in this direction in the frame-
work of the AdS/CFT duality[191]-[197]. This is encouraged by the fact that the
AdS/CFT correspondence can be used as a theoretical tool to study strongly cou-
pled systems[80],[170]-[175]. This conjecture states that a gravity theory in (n+ 1)-
dimensional AdS space-time is dual to a quantum field theory residing on its n-
dimensional boundary. According to Ref.[80], it is possible to find a mapping be-
tween the phase structure of AdS black holes in the bulk gravitational theory to that
with the dual CFTs living on the boundary of the AdS. In this language, the problem
of solving a strongly interacting field theory casts into the problem of finding solu-
tions of the equations of motion of classical gravity in the bulk space-time subjected
to some restrictions to certain parameters on both sides. Using this holographic
framework, it has been possible to gain crucial theoretical insight into high-Tc su-
perconductivity, hence justifying the name holographic superconductors (henceforth

71
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HS). The basic mechanism that leads to superconductivity in these holographic
models is discussed in details in Chapter 1.

Starting with the pioneering work of Hartnoll, Herzog and Holowitz[193], there
has been a spate of papers in the literature describing various holographic models of
superconductors[194]-[197],[206]-[240],[245]-[258],[276]-[290]. Although most of these
holographic models are based on the usual framework of Maxwell electrodynamics
[193]-[197],[206]-[223],[245]-[258],[276]-[290], studying these models in the framework
of non-linear electrodynamics is an equally important direction of research[224]-[240].

In this chapter we focus our attention on several important aspects of HS in
the presence of a higher derivative correction to the usual Maxwell electrodynamics,
namely, the Born-Infeld correction. The importance and regime of applicability of
the Born-Infeld theory are discussed in Chapter 1. Here, based on Ref.[231], we
compute the critical temperature and the order parameter of condensation of HS in
the presence of Born-Infeld corrections in the usual Einstein-Maxwell gravity. Ac-
cording to the holographic conjecture[193, 241], the scalar field which is coupled to
the gravity action in the bulk allows either of its boundary expansion coefficients
to act as order parameter for condensation in the boundary theory provided the
mass-squared of the scalar field lies between a particular range[242]. Following this,
we choose to carry out our analysis by considering the sub-leading order boundary
expansion coefficient of the scalar field as the order parameter (see Eq. (4.12), Sec-
tion 4.2). Note that, in Ref.[228] the analysis was performed by considering the
leading order coefficient as the order parameter. There the analysis was not com-
plete since the present boundary condition was not considered. In fact, the analytic
computations of the mentioned physical quantities become exceedingly difficult once
we take into account the present boundary condition. In our analysis we circumvent
this difficulty by adopting a suitable analytic scheme. We observe that a holo-
graphic superconducting phase transition indeed takes place below certain critical
temperature (Tc). We also establish a relation between charge density and critical
temperature which is seen to be affected by the non-linear Born-Infeld parameter
(b). Proceeding further, we derive the order parameter of condensation which is
non-vanishing only when T < Tc. The explicit dependence of the order parameter
on b is also exploited. Moreover, the results that we obtain are found to be in good
agreement with the numerical results found earlier in Ref.[224].

Before presenting our mathematical analysis we would like to mention the sec-
tioning of the present chapter. In Section 4.2 we present the minimal ingredients
needed to construct the holographic superconductor. In Section 4.3 and Section 4.4
we compute the critical temperature and the order parameter for the condensa-
tion, respectively. Finally, we make some comments about our holographic model
in Section 4.5.
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4.2 Ingredients to construct holographic super-

conductors

In order to construct the holographic model of a s-wave superconductor we shall
choose Schwarzschild-AdS space-time as our fixed background. Following the pre-
scription of Refs.[193, 194], we shall consider a planar Schwarzschild-AdS black hole
in this bulk space-time with the following metric:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dx2 + dy2) (4.1)

where the metric function can be written as

f(r) =

(
r2 −

r3
+

r

)
, (4.2)

r+ being the horizon radius of the black hole. Note that, we have set the radius of
the bulk AdS space-time to unity (L = 1) which follows from the scaling properties
of the equations of motion[220]. Also, we work in the system of natural units:
G = c = ~ = kB = 1.
Given this metric Eq.(4.1), it is easy to obtain the Hawking temperature of the black
hole by analytically continuing the metric to the Euclidean sector which comes out
to be

T =
3r+

4π
. (4.3)

This in indeed the temperature of the field theory residing on the boundary of the
AdS space. In accordance with Refs.[191, 192], we introduce a U(1) gauge field and
a charged massive complex scalar field in this fixed background in the form of an
Abelian-Higgs action written as

L = LBI − |∂µψ − iqAµψ|2 −m2|ψ|2. (4.4)

In Eq.(4.4) LBI is the Born-Infeld Lagrangian density given by[224]

LBI =
1

b

(
1−

√
1 +

bF

2

)
, (4.5)

where F ≡ F µνFµν and b is the Born-Infeld parameter. In the limit b → 0 the
Born-Infeld Lagrangian turns into the standard Maxwell Lagrangian. The equation
of motion for the electromagnetic field tensor Fµν can be written as

1√
−g

∂µ

√−gF µν√
1 + bF

2

 = i (ψ∗∂νψ − ψ(∂νψ)∗) + 2Aν |ψ|2. (4.6)

The equations of motion for the gauge field and the scalar field are non-linear
differential equations which are solved by appropriate ansatz. In our work, we choose
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the planar symmetric ansatz ψ = ψ(r) and Aµ = (φ(r), 0, 0, 0)[193, 194]. This leads
to the following two coupled non-linear differential equations for the scalar and the
gauge fields:

ψ′′(r) +

(
f ′

f
+

2

r

)
ψ′(r) +

(
φ2(r)

f 2
+

2

f

)
ψ(r) = 0, (4.7)

φ′′(r) +
2

r

(
1− bφ′2(r)

)
φ′(r)− 2ψ2(r)

f

(
1− bφ′2(r)

) 3
2 = 0. (4.8)

Note that, the above set of equations (Eqs. (4.7), (4.8)) are written in the radial
coordinate r. In order to carry out an analytic computation, it is convenient to

define a new variable z =
r+

r
which redefines the positions of the horizon and the

boundary at z = 1 and z = 0, respectively. In this new variable Eq.(4.7) and
Eq.(4.8) become

zψ′′(z)− 2 + z3

1− z3
ψ′(z) +

[
z

φ2(z)

r2
+(1− z3)2

+
2

z(1− z3)

]
ψ(z) = 0, (4.9)

φ′′(z) +
2bz3

r2
+

φ′3(z)− 2ψ2(z)

z2(1− z3)

(
1− bz4

r2
+

φ′2(z)

) 3
2

φ(z) = 0. (4.10)

At this point of discussions we must mention a few important points regarding
our analysis, namely, (i) we have performed our entire analysis in the probe limit,
(ii) we have investigated the effect of the higher derivative corrections to the gauge
field in the leading order, i.e., we have kept terms only linear in b. Thus, the results
derived from our analysis are valid only in the leading order of b, (iii) we have
chosen the mass square of the scalar field (ψ) as m2 = −2 which is well above the
Breitenlohner-Freedman (BF) bound[242], (iv) in the field ansatz, the choices of the
fields are justified since it is seen that under the transformations Aµ → Aµ + ∂µθ
and ψ → ψeiθ the above equations of motion remain invariant. This demands that
the phase of ψ remains constant and we may take ψ to be real without any loss of
generality.

In order to solve the above equations of motion (Eqs. (4.9),(4.10)) the following
boundary conditions are considered[193, 194]:

• The regularity of the gauge field and the scalar field at the horizon (z = 1)
implies

φ(z = 1) = 0, and ψ(z = 1) =
3

2
ψ′(z = 1).

• At the boundary of the AdS space-time (z = 0)

φ(z) ≈ µ− ρ

r
= µ− ρ

r+

z (4.11)

and

ψ(z) ≈ ψ(−)

r∆−
+
ψ(+)

r∆+
=
ψ(−)

r
∆−
+

z∆− +
ψ(+)

r
∆+

+

z∆+ (4.12)
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where ∆± = 3
2
±
√(

9
4

+m2
)

is the conformal dimension of the condensation

operator O in the boundary field theory, and µ and ρ are interpreted as the
chemical potential and charge density of the dual field theory, respectively.
Since we have considered m2 < 0, we are left with two different condensation
operators of different dimensionality corresponding to the choice of quantiza-
tion of the scalar field ψ in the bulk[241]. In the present context either ψ(+) or
ψ(−) will act as a condensation operator while the other will act as a source. In
the present work we choose ψ(+) = 〈O〉 and ψ(−) as its source. Since we want
the condensation to take place in the absence of any source, we set ψ(−) = 0.

At this point, it must be stressed that for the present choice of ψ the analytic
calculations of various entities near the critical point get notoriously difficult and
special care should be taken in order to carry out a perturbative analysis. In the
present work we focus to evade the above mentioned difficulties by adopting certain
mathematical techniques. Our analysis indeed shows a good agreement with the
numerical results existing in the literature[224].

4.3 Critical temperature for condensation

The presence of non-extremal black hole in the bulk places the system at finite
temperature. In addition, the charge of the black hole gives rise to a chemical
potential in the boundary field theory which subsequently introduces a new scale in
the dual theory making a phase transition possible at a critical temperature, Tc.

At the critical temperature Tc the scalar field ψ(z) vanishes, so Eq.(4.10) becomes

φ′′(z) +
2bz3

r2
+(c)

φ′3(z) = 0. (4.13)

The solution of this non-trivial equation in the interval [z, 1] is found to be

φ(z) = λr+(c)ξ(z) (4.14)

where
λ =

ρ

r2
+(c)

(4.15)

and

ξ(z) =

∫ 1

z

dz̃√
1 + bλ2z̃4

. (4.16)

In order to evaluate the above integration we shall perform a perturbative ex-
pansion of bλ2 in the rhs of Eq.(4.16) and retain only the terms that are linear in
b such that bλ2 = bλ2

0 + O(b2), where λ2
0 is the value of λ2 for b = 0. Now, for

our particular choice of ψ(i) (i = +,−) we have λ2
0 ≈ 17.3 [216]. Recalling that

the existing values of b in the literature are b = 0.1, 0.2, 0.3 [224], we observe that
bλ2

0 > 1. Consequently, the binomial expansion of the denominator in Eq.(4.16) has
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to be done carefully. The integration appearing in Eq.(4.16) is done for two ranges
of values of z, one for z 6 Λ < 1 while the other for Λ 6 z 6 1, where Λ is such that
bλ2

0z
4|z=Λ = 1. At this stage, it is to be noted that bλ2

0z
4 < 1 for z < Λ, whereas,

on the other hand bλ2
0z

4 > 1 for z > Λ.
Now, let us solve the integration of Eq.(4.16) for the two range of values of z

mentioned above.

• For the range z 6 Λ < 1,

ξ(z) = ξ1(z) =

∫ Λ

z

dz̃√
1 + bλ2

0z̃
4

+

∫ 1

Λ

dz̃√
1 + bλ2

0z̃
4

≈
∫ Λ

z

(
1− bλ2

0z̃
4

2

)
+

1√
bλ0

∫ 1

Λ

(
1

z̃2
− 1

2bλ2
0z̃

6

)
=

[
9

5
Λ− z +

z5

10Λ4
− Λ2 +

Λ6

10

]
. (4.17)

• For the range Λ 6 z 6 1,

ξ(z) = ξ2(z) =

∫ 1

z

dz̃√
1 + bλ2

0z̃
4

≈ 1√
bλ0

∫ 1

z

(
1

z̃2
− 1

2bλ2
0z̃

6

)
=

Λ2

z5

[
z4(1− z) +

Λ4

10
(z5 − 1)

]
. (4.18)

From Eq.(4.18) it is evident that the boundary condition φ(1) = 0 is indeed satisfied
(ξ2(1) = 0).

As a next step, let us express ψ(z) near the boundary (z → 0) as

ψ(z) =
< O >√

2r2
+

z2F (z). (4.19)

Here F (z) is a trial function which satisfies the conditions F (0) = 1 and F ′(0) = 0.
This form of the trial function is compatible with the boundary behavior of the scalar
field ψ(z) (Eqn.(4.12)).

Using Eq. (4.19) we may write Eq. (4.9) as

F ′′(z)− (5z4 − 2z)

z2(1− z3)
F ′(z)− 4z3

z2(1− z3)
F (z) + λ2 ξ2(z)

(1− z3)2
F (z) = 0. (4.20)

This equation can be put in the Sturm-Liouville form as

[p(z)F ′(z)]
′
+ q(z)F (z) + λ2g(z)F (z) = 0 (4.21)
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with the following identifications:

p(z) = z2(1− z3)

q(z) = −4z3

g(z) =
z2

(1− z3)
ξ2(z) = χ(z)ξ2(z) (4.22)

where χ(z) =
z2

(1− z3)
.

Using Eq.(4.22), we may write the eigenvalue λ2 as

λ2 =

∫ 1

0
{p(z)[F ′(z)]2 − q(z)[F (z)]2} dz∫ 1

0
{g(z)[F (z)]2} dz

=

∫ 1

0
{p(z)[F ′(z)]2 − q(z)[F (z)]2} dz∫ Λ

0
{χ(z)ξ2

1(z)[F (z)]2} dz +
∫ 1

Λ
{χ(z)ξ2

2(z)[F (z)]2} dz
. (4.23)

Note that, we have chosen the trial function in the form

F (z) = 1− αz2 (4.24)

which satisfies the conditions F (0) = 1 and F ′(0) = 0. In this regard we must
point out one important difference between our analytic approach and the numer-
ical method existing in the literature[224]. While solving Eqs. (4.9) and (4.13)
numerically the functions F (z) and ξ(z) (Eq.(4.16)) do not appear in the analysis,
instead they are solved directly. On the contrary, in the analytic method certain ap-
proximations are needed to solve Eqs. (4.9) and (4.13) which however demonstrates
the limitations of the analytic method adopted here.

The critical temperature for condensation (Tc) in terms of the charge density (ρ)
can be obtained as

Tc =
3r+(c)

4π
= γ
√
ρ. (4.25)

In Eq.(4.25) γ =
3

4π
√
λ

is the coefficient of Tc and we have used Eqs. (4.3) and

(4.15) to arrive at this relation.
Let us now determine the eigenvalue (λ) of Eq.(4.23) for different values of the

parameter b which will enable us to demonstrate the effect of higher derivative gauge
correction on the critical temperature through Eq.(4.25). As an example, for b = 0.1,
we obtain

λ2 = 300.769 +
2.27395α− 5.19713

0.0206043 + (0.00265985α− 0.0119935)α
(4.26)

which has a minima for α ≈ 0.653219. Therefore from eq.(4.23) we obtain

λ2 ≈ 33.8298. (4.27)
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The value of λ2 obtained from the perturbative calculation justifies our approxima-
tion for computing the integral in Eq.(4.16) upto order b and neglecting terms of
order b2 and higher since the term of order b2 can be estimated to be smaller than
the term of order b.

Substituting Eq.(4.27) in Eq.(4.25) we obtain,

Tc ≈ 0.099
√
ρ. (4.28)

The value thus obtained analytically is indeed in very good agreement with the
numerical result: Tc = 0.10072

√
ρ [224]. Similarly, for the other values of the

Born-Infeld parameter (b), we obtain the corresponding perturbative values for the
coefficients of Tc which are presented in the Table 4.1 below.

Values of b γnumerical γSL

0.1 0.10072 0.099
0.2 0.08566 0.093
0.3 0.07292 0.089

Table 4.1: A comparison between analytic and numerical values for the coefficient
(γ) of Tc corresponding to different values of b

Before concluding this section, we would like to emphasize the subtlety of the
analytic method adapted here. We employ a perturbative technique to compute
the integral in Eq.(4.16) upto order b. This approximation is valid since we have
investigated the effect of the higher derivative corrections upto the leading order
in the nonlinear parameter (b). However, due to the nature of the integrand of
Eq.(4.16), we had to be careful in separating the integral in two regions in order to
perform a binomial expansion of the integrand.

4.4 Order parameter for condensation

In the present work, the order parameter (〈O〉) for the s-wave condensate in the
boundary field theory has been chosen as the subleading coefficient of the near
boundary behavior of the scalar field ψ(z) (cf. Eq.(4.12)). In order to calculate the
order parameter we need to consider the behavior of the gauge field (φ) near the
critical temperature Tc. Substituting Eq.(4.19) into Eq.(4.10) we can find

φ′′(z) +
2bz3

r2
+

φ′3(z) =
F 2(z)z2〈O〉2

r4
+(1− z3)

(
1− 3bz4φ′2(z)

2r2
+

)
φ(z) + O(b2) (4.29)

It is to be noted that in the subsequent analysis only terms upto linear order in
b have been taken into account.
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As a next step, we expand φ(z) perturbatively in the small parameter 〈O〉2/r4
+

as follows :
φ(z)

r+

=
φ0(z)

r+

+
〈O〉2

r4
+

χ(z) + higher order terms. (4.30)

where φ0 is the solution of Eq.(4.13). Here χ(z) is some arbitrary function which
satisfies the boundary condition

χ(1) = χ′(1) = 0. (4.31)

Substituting Eq.(4.30) and Eq.(4.14) we may write Eq.(4.29) in terms of χ(z) as

χ′′(z) + 6bλ2z3ξ′2(z)χ′(z) = λ
F 2(z)z2ξ(z)

(1− z3)

(
1− 3bλ2z4ξ′2(z)

2

)
(4.32)

Multiplying both sides of Eq.(4.32) by e3bλ2z4ξ′2(z)/2 we obtain

d

dz

(
e3bλ2z4ξ′2(z)/2χ′(z)

)
= e3bλ2z4ξ′2(z)/2λ

F 2(z)z2ξ(z)

(1− z3)

(
1− 3bλ2z4ξ′2(z)

2

)
(4.33)

The l.h.s of Eq.(4.33) may be written as,

d

dz

(
e3bλ2z4ξ′2(z)/2χ′(z)

)
= e3bλ2z4ξ′2(z)/2

[
χ′′(z) + 6bλ2z3ξ′2(z)χ′(z) + 3bλ2z4ξ′(z)ξ′′(z)χ′(z)

]
.

(4.34)
The last term in the r.h.s of Eq.(4.34) can be rewritten as,

3bλ2z4ξ′(z)ξ′′(z)χ′(z) = 3bλ2z4ξ′(z)

(
φ′′0(z)

λr+

)
χ′(z)

=
−6b2λz7ξ′(z)

r3
+

φ′30 (z)χ′(z)

= −6b2λ4z7ξ′4(z)χ′(z)

≈ 0. (4.35)

where we have used Eq.(4.13).
Therefore Eqn.(4.34) becomes

d

dz

(
e3bλ2z4ξ′2(z)/2χ′(z)

)
= e3bλ2z4ξ′2(z)/2

[
χ′′(z) + 6bλ2z3ξ′2(z)χ′(z)

]
. (4.36)

The r.h.s of Eq.(4.33) may be written as,

e3bλ2z4ξ′2(z)/2λF
2(z)z2ξ(z)

(1− z3)

(
1− 3bλ2z4ξ′2(z)

2

)
≈

(
1 +

3bλ2z4ξ′2(z)

2

)
λF 2(z)z2ξ(z)

(1− z3)(
1− 3bλ2z4ξ′2(z)

2

)
≈ λF 2(z)z2ξ(z)

(1− z3)
. (4.37)
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Combining Eq.(4.36) and Eq.(4.37) we obtain

d

dz

(
e3bλ2z4ξ′2(z)/2χ′(z)

)
= λ

F 2(z)z2ξ(z)

(1− z3)
. (4.38)

Using the boundary condition Eq.(4.31) and integrating Eq.(4.38) in the interval
[0, 1] we finally obtain

χ′(0) = −λ (A1 + A2) (4.39)

where,

A1 =

∫ Λ

0

F 2(z)z2ξ1(z)

(1− z3)
, for 0 ≤ z < Λ

=
1

12600Λ4
{−70

√
3π(−1− 10Λ4 + α(−2 + Λ4(10α + 18(2 + α)Λ− 10(2 + α)Λ2+

(2 + α)Λ6))) + Λ(126Λ(−5 + 98Λ3) + 30α(84 + Λ3(21 + 2Λ3(244 + 21Λ(−10

+ Λ4))))− 35α2Λ2(12 + Λ3(474 + Λ(−360 + Λ2(94 + 9Λ(−10 + 4Λ + Λ4))))))

− 420 log(1− Λ) + 210 log(1 + Λ + Λ2) + 210(2
√

3(−1− 10Λ4 + α(−2 + Λ4(10α

+ 18(2 + α)Λ− 10(2 + α)Λ2 + (2 + α)Λ6))) tan−1

(
1 + 2Λ√

3

)
− (−2α− 10(1 + α2)

Λ4 + 18(α− 2)αΛ5 − 10(α− 2)αΛ6 + (α− 2)αΛ10)(2 log(1− Λ)− log(1 + Λ + Λ2))

− 2(α2 + 20αΛ4 + Λ5(18− 10Λ + Λ5)) log(1− Λ3))} (4.40)

and

A2 =

∫ 1

Λ

F 2(z)z2ξ2(z)

(1− z3)
, for Λ < z ≤ 1

=
Λ2

360
{4
√

3π(−10(1 + α(4 + α)) + (−1 + 2α(1 + α))Λ4) + 12
√

3(10 + 10α(4 + α) + Λ4

− 2α(1 + α)Λ4) tan−1

(
1 + 2Λ√

3

)
+ 3(−12α(−10 + Λ(20− 10Λ + Λ5 + Λ3(−1 + log 3)))

− 6(Λ2 + Λ4(−1 + log 3)) + α2(110 + Λ(−120 + Λ2(40 + 3Λ(−15 + 4Λ + Λ4)))− 60 log 3)

+ 60 log 3− 24αΛ4 log Λ + 6(−10 + Λ4 + 2α(5α + Λ4)) log(1 + Λ + Λ2))}
(4.41)

where ξ1(z) and ξ2(z) were identified earlier (Eqn.(4.17) and Eqn.(4.18)).
Now from Eq. (4.11) and Eq.(4.30) we may write

µ

r+

− ρ

r2
+

z =
φ0(z)

r+

+
〈O〉2

r4
+

χ(z)

= λ ξ(z) +
〈O〉2

r4
+

{
χ(0) + z χ′(0) +

z2

2!
χ′′(0) + ...

}
(4.42)

It is to be noted that, while writing the r.h.s of Eq.(4.42) we have made a Taylor
expansion of χ(z) around z = 0.
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Comparing the coefficients of z from both sides of Eq.(4.42), we obtain

ρ

r2
+

= λ− 〈O〉
2

r4
+

χ′(0). (4.43)

Substituting Eq.(4.39) we may write Eq.(4.43) in the following form:

ρ

r2
+

= λ

{
1 +
〈O〉2

r4
+

(A1 + A2)

}
. (4.44)

Substituting λ = ρ/r2
+(c) (cf. Eq.(4.14)) into Eq.(4.44) we finally obtain the

expression for the order parameter 〈O〉 near the critical temperature (Tc) as,

〈O〉 = β T 2
c

√
1− T

Tc
(4.45)

where the coefficient β is given by,

β =
16
√

2 π2

9
√

(A1 + A2)
. (4.46)

In the following table (Table 2) we have provided both analytic as well as
numerical[224] values for the coefficient β corresponding to different values of the
Born-Infeld parameter (b).

Table 4.2: Values of β (Eq.(4.46)) for different values of b

Values of b Values of α (A1 + A2) βSL βnumerical
0.1 0.653219 0.0442811 117.919 207.360

0.2 0.656050 0.0388491 125.893 302.760

0.3 0.660111 0.0352282 132.205 432.640

Here (from Table 4.2) one can note that both the values that are obtained through
different approaches are in the same order. The difference that is caused is mainly
due to the perturbative technique itself where we have dropped higher order terms
in the coupling (b). Similar features have also been found earlier[221]. However,
the trend is unique, i.e., β increases as we increase the value of coupling b (see
also Fig.(4.1)). Indeed, it would be interesting to carry out the analysis taking
into account higher order terms in the coupling b which is expected to reduce the
disparity between the analytic and numerical results.

4.5 Conclusive remarks

In this chapter we have discussed the principle properties of a holographic model
of superconductor based on fundamental principles of AdS/CFT duality. Among
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Figure 4.1: Plot of 〈O〉/T 2
c with T/Tc for

different values of b.

Figure 4.2: Plot of the coefficient of Tc (γ)
with the BI parameter (b).

several models of holographic superconductor in the AdS black hole background,
we have taken into account a model in which nonlinear Born-Infeld Lagrangian is
included in the matter action. The main purpose for considering the BI theory is
that it corresponds to the higher derivative corrections of the gauge fields in the
usual Abelian theory that effectively describes the low energy behavior of the string
theory. In this sense it may be considered as the generalized version of the Abelian
model. These corrections must have nontrivial influences on the physical properties
of the system.

The aim of the present analysis is to study the effects of these higher derivative
corrections on the holographic s-wave condensate analytically. In this regard we have
been able to extend the so called Sturm-Liouville (SL) method for this nonlinear
model. This method was first introduced in [216] in the context of usual Maxwell
theory. From our analysis it is indeed evident that extending such a method for the
nonlinear model creates difficulties in the analysis. However, we have been able to
construct an analytic technique based on this SL method in order to analyse the
properties of this holographic superconductor subjected to a nontrivial boundary
condition. On top of it, our approach reveals the fact that the solutions of the
field equations are highly nontrivial and are not even exactly solvable. The analytic
method presented here provides a smooth platform to deal with this difficulty.

The novelty of the present analysis is that, we have analytically studied the effects
of the BI coupling parameter b on the critical temperature and the condensation
operator near the critical point. It is observed that the above physical quantities are
indeed affected due to the higher derivative corrections. The results thus obtained
from our calculations can be summarized qualitatively as follow:
• The critical temperature (Tc) increases as we decrease the value of b indicating

the onset of a harder condensation (Table 4.1).
• The value of the order parameter increases with the increase of b (Table 4.2).
The point that must be stressed at this stage of discussion is that the analytic

approach is always more preferable than the numerical approach. This is due to
the fact that the numerical results become less reliable when the temperature T
approaches to zero[196, 216]. In this temperature limit the numerical solutions to
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the nonlinear field equations becomes very much difficult and therefore the deter-
mination of the nature of the condensate becomes practically very arduous unless
analytic methods are taken into account. Therefore, analytic method is always more
reliable while performing computations as T → 0.

From Fig. 4.2 one may note that the results that are obtained using the SL
method are not exactly identical to those obtained by numerical techniques. The
deviation of the analytic values from those of the numerical one (Tables 4.1 and
4.2) is not unusual[221], considering the difference in the two approaches (analytic
and numerical). Contrary to the numerical approach, in the analytic method we
have taken into account only the leading order terms in the coupling b. Certainly,
there is a great amount of approximation involved which is absent in the numerical
technique. The difference between the two approaches in fact motivates us to enquire
into a more general analytic approach in which the above disparity may be reduced
and the agreement eventually becomes more close.

In passing, we would like to mention that the numerical results obtained in the
existing literature have always been substantiated by analytic results. However, one
may confirm the validity of the analytic results obtained by the Sturm-Liouville
(SL) method (without referring to the numerical results) by comparing them with
the results obtained from an alternative analytic technique which is known as the
matching method[213].

In order to continue our study of holographic superconductors, in the next chap-
ter, we shall consider a Gauss-Bonnet holographic superconductor in the presence of
several Born-Infeld-like corrections. We shall investigate the effects of non-linearity
on this model and shall make a comparison between these two types of corrections.



Chapter 5

Gauge and Gravity Corrections to
Holographic Superconductors: A
Comparative Survey

5.1 Overview and motivations

The systematic exposition of holographic superconductors in the presence of higher
derivative corrections to the Maxwell electrodynamics presented in the previous
Chapter 4 demonstrates the power of the AdS/CFT duality in describing various
aspects of strongly coupled condensed matter systems which is otherwise difficult to
explain in the usual framework of perturbation theory. We analyzed properties of
holographic superconductors in Chapter 4 by considering only non-linear corrections
to the usual gauge fields in the Abelian-Higgs action (see Eq. (4.4), Chapter 4). How-
ever, there remains ample scopes for studying these holographic models in presence
of other corrections to the gauge and/or gravity sector of the action Eq. (1.6). A
extensive amount of research has been performed in this direction[217]-[223],[225]-
[227],[229, 232],[234]-[240]. These studies reveal that these non-linear corrections
modify the physical quantities of interest of a HS. Along with this, holographic su-
perconductors in the presence of higher curvature corrections (e.g., Gauss-Bonnet
correction) seem to posses several unique features such as, (i) the observed con-
stancy of the ratio of the frequency gap of the real part of the conductivity to
the critical temperature of the superconductor[206] breaks down for Gauss-Bonnet
superconductors[213, 215, 218, 220], (ii) in certain generalized cases of different val-
ues of the Gauss-Bonnet correction changes the order of the phase transition[218],
(iii) the ratio of the shear viscosity to the entropy density (η/s > 1/4π) in CFT dual
to the Einstein-Gauss-Bonnet gravity changes significantly with the Gauss-Bonnet
coupling[186].

Here we must mention that none of these studies takes into account both the
corrections simultaneously. Thus it remains an open issue to make a comparative
study between these two corrections regarding their effects of the holographic con-
densates. In the present chapter, based on Ref.[240], we aim to address this issue by

84
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incorporating both Gauss-Bonnet higher curvature correction to the gravity sector
and higher derivative Born-Infeld like corrections in the Abelian-Higgs sector.1

Higher curvature gravity theories have earned repeated attentions in recent past
with the advent of string theory. Certain aspects of string theory are well described
by associating gravity theories with it. The consistent description of string theory
requires the addition of higher curvature terms in the effective action. In fact the
effect of string theory on gravity may be studied by considering this low-energy
effective action which describes classical gravity[4]. It has been observed that this
effective action must contain higher curvature terms and are needed to be ghost
free[16]. The Lovelock action is found to be consistent with these criteria[5]. On
the other hand, the importance of higher derivative corrections to the Maxwell
electrodynamics has been highlighted repeatedly for the past several decades. The
primary motivation for introducing this latter correction was to remove divergences
in the self-energy of point-like charged particles[20]. However, they have earned
renewed attentions since these theories naturally arise string theory[35].

Besides the conventional Born-Infeld non-linear electrodynamics (BINE)[20], two
new types of NEDs have been proposed recently, namely, the logarithmic non-linear
electrodynamics (LNE) and the exponential non-linear electrodynamics (ENE), in
the context of static charged asymptotic black holes[37, 38, 39]. In fact, the matter
actions with LNE and ENE yield the higher derivative corrections to the usual
Maxwell action. On the other hand these NEDs possess many unique proper-
ties which are quite different from the Maxwell electrodynamics. For example,
while solutions with LNE completely remove divergences in the electric fields at
r = 0, these divergences still remain in the solutions with ENE. But these diver-
gences are much weaker than the usual Maxwell case[38, 39]. Also, compared with
Maxwell theory, solutions with LNE and ENE have different temperatures and elec-
tric potentials[37, 38, 39]. Another novel property of these non-linear theories is that,
their asymptotic black hole solutions are the same as that of a Reissner-Nordström
black hole[39]. On top of that, these types of non-linear theories retain some in-
teresting properties (alike BINE) such as, absence of shock waves, birefringence
etc.[38, 39]. One further advantage of studying ENE and LNE over the Maxwell
theory is that they provide an enriched platform to investigate generalized versions
of NEDs in a systematic manner so as to reveal some general features of the effects
of higher derivative corrections to the gauge fields in the theory concerned.

Apart from these, the effects of external magnetic fields on the holographic super-
conductors with or without these nontrivial non-linear corrections have been studied.
These studies reveal several interesting properties of these superconductors which
resemble certain properties of conventional superconductors, such as the Meissner
effect, vortex and droplet solutions etc.[245]-[258].

It must be emphasized that holographic superconductors with several NEDs
(BINE, ENE, LNE) has been studied in Ref.[236] in the planar Schwarzschild-AdS
black hole background without taking into account higher curvature corrections to

1In this regard we should mention the work of Ref.[239] which appeared almost simultaneously
with Ref.[240].
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the Einstein gravity. Also, in Ref.[239] a holographic model with BINE in the Gauss-
Bonnet gravity has been considered. Surprisingly most of the computations have
been performed using numerical methods. Therefore, it would be nice to perform
analytic analysis of holographic superconductor models with non-linear electrody-
namic fields (ENE and LNE) in the Gauss-Bonnet black hole background.

Considering all the above mentioned facts, in this chapter we have made an
extensive analytic investigation of the holographic model of superconductors men-
tioned at the end of the previous paragraph in the presence as well as absence of an
external magnetic field. Our aim is to address the following issues: (i) investigate
the effects of higher curvature as well as higher derivative corrections on the proper-
ties of holographic superconductors, (ii) explore the effects of an external magnetic
field on the holographic condensates, and determine how the non-linear corrections
modify the critical value of the magnetic field, (iii) make a comparison between the
Maxwell theory and the non-linear electrodynamic theories regarding their effects on
the formation of the scalar condensates, (iv) compare the non-linear electrodynamic
theories in an attempt to see which one has stronger effects on the formation of the
scalar condensates.

The present chapter is organized as follows. In Section 5.2, we shall present
the basic setup for s-wave holographic superconductor with two different non-linear
electrodynamics (ENE and LNE) in the planar (4 + 1)-dimensional Gauss-Bonnet
AdS black hole background. In Section 5.3, we shall calculate various properties
of the s-wave holographic superconductor with exponential electrodynamics (ENE)
which include the critical temperatures for condensation and the expectation values
of the condensation operator in the absence of external magnetic field. In Section 5.4,
we’ll discuss the effects of an external static magnetic field on this holographic
superconductor and calculate the critical magnetic field for condensation. Finally,
we draw our conclusions in Section 5.5.

5.2 Basic set up

In this Chapter we consider both gravity and gauge corrections to the usual action
for holographic superconductors (cf. Eq. (1.6) of Chapter 1). Here, as gravity
correction we consider higher curvature Gauss-Bonnet (GB) correction to the usual
Einstein-Hilbert action. On the other hand, exponential and logarithmic corrections
to the usual Maxwell gauge fields are taken into account as gauge corrections which
are important variants of the well known Born-Infeld corrections to the Abelian
gauge fields.

The general form of the action containing the Gauss-Bonnet correction can be
obtained as the truncation of the Lovelock action which is given by[5]-[19],

Sgrav =
1

16πGd

∫
ddx
√
−g

[d/2]∑
i=0

αiLi (5.1)

where, αi is an arbitrary constant, Li is the Euler density of a 2i dimensional
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manifold and Gd is the Gravitational constant in d-dimensions. In our subsequent
analysis we shall consider the coordinate system where Gd = ~ = kB = c = 1. Now,
since the GB term contributes non-trivially to the equations of motion only when
space-time dimension is greater than four (D > (3 + 1)), we are mainly concerned
with the (4 + 1)-dimensional Einstein-Gauss-Bonnet gravity in anti-de Sitter (AdS)
space. Thus, the effective action Eq. (5.1) can be written as,

Sgrav =
1

16π

∫
d5x
√
−g
(
α0L0 + α1L1 + α2L2

)
=

1

16π

∫
d5x
√
−g
(
− 2Λ + R + αL2

)
(5.2)

where Λ is the cosmological constant given by −6/l2, l being the AdS length, α2 ≡ α
is the Gauss-Bonnet coefficient, L1 = R is the usual Einstein-Hilbert Lagrangian
and L2 =

(
RµνγδR

µνγδ − 4RµνR
µν + R2

)
is the Gauss-Bonnet Lagrangian.

The Ricci flat solution for the action Eq. (5.2) is given by[89, 213]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dx2 + dy2 + dz2) (5.3)

where the metric function is2[89, 213],

f(r) =
r2

2a

(
1−

√
1− 4a

(
1− M

r4

))
. (5.4)

In Eq. (5.4), M is the mass of the black hole which may be expressed in terms of
the horizon radius (r+) as, r+ = M1/4[89, 213, 215, 229]; the parameter a is related to
the coefficient α as, a = 2α. It is to be noted that, in order to avoid naked singularity
we must have a ≤ 1/4[213, 229], whereas, considering the causality of dual field
theory on the boundary the lower bound of a is found to be a ≥ −7/36[218, 219].
Also, in the asymptotic infinity (r →∞) we may write the metric function Eq. (5.4)
as,

f(r) ∼ r2

2a

(
1−
√

1− 4a
)
. (5.5)

Thus, the effective AdS radius can be defined as[213],

L2
eff =

2a

1−
√

1− 4a
. (5.6)

Note that, in the limit a → 1/4, L2
eff = 0.5. This limit is known as the Chern-

Simons limit[213, 229].
The Hawking temperature of the black hole may be obtained by analytic con-

tinuation of the metric at the horizon (r+) and is given by[89, 213, 215, 229],

T =
r+

π
. (5.7)

2Without loss of generality, we can choose l = 1, which follows from the scaling properties of
the equation of motion.
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In this chapter we will be studying the s-wave holographic superconductor in the
framework of various non-linear electrodynamics in the (4 + 1)-dimensional planar
Gauss-Bonnet AdS (GBAdS) black hole background. For this purpose, we consider
a matter Lagrangian which consists of a charged U(1) gauge field, Aµ, and a charged
massive complex scalar field, ψ. Thus, following Refs. [191]-[197], the matter action
for the theory may be written as,

Smatter =

∫
d5x
√
−g
(
L(F )− |∇µψ − iAµψ|2 −m2ψ2

)
(5.8)

where m is the mass of the scalar field. Moreover, we carry out all the calculations
in the probe limit which was discussed in Chapter 4. The term L(F ) in Eq. (5.8)
corresponds to the Lagrangian for the non-linear electrodynamic field. In different
non-linear theories the Lagrangian L(F ) can take the following forms[37, 38, 39]:

L(F ) =


1

4b

(
e−bF

µνFµν − 1
)
, for ENE

−2

b
ln
(

1 + 1
8
bF µνFµν

)
, for LNE

(5.9)

Note that, in the limit b→ 0 we recover the usual Maxwell Lagrangian: L(F )|b→0 =
−1

4
F µνFµν .
In order to solve the equations of motion resulting from the variation of the action

Eq. (5.8) w.r.to the gauge and scalar fields we shall choose the following ansatz for
the two fields concerned[213, 229]:

Aµ =
(
φ(r), 0, 0, 0, 0

)
, (5.10a)

ψ =ψ(r). (5.10b)

It is to be noted that, the above choices of the fields are justified since it is seen that
under the transformations Aµ → Aµ + ∂µθ and ψ → ψeiθ the above equations of
motion remain invariant. This demands that the phase of ψ remains constant and
we may take ψ to be real without any loss of generality.

With the change of coordinates z = r+
r

, where the horizon (r = r+) is at z = 1
and the boundary (r → ∞) is at z = 0, the equations of motion for the the scalar
field (ψ(z)) and the U(1) gauge field (Aµ) corresponding to ENE and LNE can be
obtained as,

ψ′′(z) +

(
f ′(z)

f(z)
− 1

z

)
ψ′(z) +

φ2(z)ψ(z)r2
+

z4f 2(z)
−
m2ψ(z)r2

+

z4f(z)
= 0, (5.11)

(
1 +

4bz4φ′2(z)

r2
+

)
φ′′(z)− 1

z
φ′(z) +

8bz3φ′3(z)

r2
+

− 2ψ2(z)φ(z)

r−2
+ f(z)z4

e−2bz4φ′2(z)/r2
+ = 0,

(5.12)
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(
1 +

bz4φ′2(z)

4r2
+

)
φ′′(z)− φ′(z)

z
+

5bz3φ′3(z)

4r2
+

− 2ψ2(z)φ(z)

r−2
+ f(z)z4

(
1− bz4φ′2(z)

4r2
+

)2

= 0,

(5.13)

respectively. In order to solve the above set of equations we consider the following
boundary conditions:

(i) At the horizon (z = 1) one must have, for m2 = −3,3

φ(1) = 0, ψ
′
(1) =

3

4
ψ(1) (5.14)

(ii) In the asymptotic AdS region (z → 0) the solutions for the scalar potential
and the scalar field may be expressed as,

φ(z) = µ− ρ

r2
+

z2, (5.15a)

ψ(z) = D−z
λ− +D+z

λ+ (5.15b)

where λ± = 2±
√

4− 3L2
eff is the conformal dimension of the condensation operator

Oi (i = 1, 2) in the boundary field theory, µ and ρ are identified as the chemical
potential and the charge density of the dual field theory, respectively. It is interesting
to note that, since we have considered m2 < 0 in our analysis, we are left with the
two different condensation operators of different dimensionality corresponding to the
choice of quantization of the scalar field ψ in the bulk. We choose D− = 0. Then,
according to the AdS/CFT correspondence D+ ≡ 〈O2〉, the expectation value of the
condensation operator in the dual field theory.

5.3 s-wave condensation without magnetic field

In this section we aim to derive the critical temperature for condensation (Tc) an-
alytically for the Gauss-Bonnet holographic s-wave condensate with two types of
non-linear electrodynamics mentioned in the previous section. In addition, we will
also calculate the normalized condensation operator and the critical exponent asso-
ciated with the condensation values in the presence of these non-linear theories in
the background of (4 + 1)-dimensional Gauss-Bonnet AdS black hole. In this way
we will be able to demonstrate the effects of the Gauss-Bonnet coupling coefficient
(a) as well as non-linear parameter (b) on these condensates.

In order to carry out our analysis we adopt a well known analytic technique
which is known as the matching method[213]. In this method, we first determine
the leading order solutions of the equations of motion Eqs. (5.11), (5.12) and (5.13)

3For the rest of the analysis of our paper we choose m2 = −3. This ensures that we are above
the Breitenlohner-Freedman bound[242].
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near the horizon (1 ≥ z > zm) and at the asymptotic infinity (zm > z ≥ 0) and
then match these solutions smoothly at the intermediate point, zm. At this stage of
discussion it is worthy of mentioning that, we pursue our analytic investigation in
the same spirit as in Refs.[213], [234] and match the leading order solutions near the
horizon and the boundary at the intermediate point zm = 0.5. It may be stressed
that the qualitative features of the analytical approximation does not change for
other values of zm (0 < zm ≤ 1) and differences in the numerical values are not
too large[213]. Therefore throughout our analysis we shall choose zm = 0.5 while
obtaining numerical values and plotting various quantities. In fact, as mentioned in
Ref.[222], this choice of the matching point roughly corresponds to the geometrical
mean of the horizon radius and the AdS scale. Interestingly, with this choice of zm
our results are fairly consistent with Ref.[213] for b = 0. It is also to be noted that,
the matching method helps us to determine the values of the critical temperature as
well as of condensation operator only approximately, in the leading order of the non-
linear parameter, b. Moreover, this method provides us a much better understanding
of the effects the Gauss-Bonnet coefficient (a) as far as analytic computation is
concerned[213].

In this section we present the detail analysis for the holographic s-wave su-
perconductor with exponential electrodynamics only. Since, the analysis for the
holographic superconductor with logarithmic electrodynamics closely resemblances
to that of the previous one, we shall only write down the corresponding expressions
for this model (below Eq. (5.32)).

Let us first consider the solutions of the gauge field, φ(z), and the scalar field,
ψ(z), near the horizon (z = 1). We Taylor expand both φ(z) and ψ(z) near the
horizon as[213],

φ(z) = φ(1)− φ′(1)(1− z) +
1

2
φ
′′
(1)(1− z)2 + · · · (5.16)

ψ(z) = ψ(1)− ψ′(1)(1− z) +
1

2
ψ
′′
(1)(1− z)2 + · · · (5.17)

It is to be noted that, in Eq. (5.16) and Eq. (5.17), we have considered φ′(1) < 0
and ψ(1) > 0 in order to make φ(z) and ψ(z) positive. This can be done without
any loss of generality.

Near the horizon, z = 1, we may write from Eq. (5.11)

ψ
′′
(1) =

[
1

z
ψ
′
(z)

]
z=1

−
[
f
′
(z)ψ

′
(z)

f(z)

]
z=1

−
[
φ2(z)ψ(z)r2

+

z4f 2(z)

]
z=1

−
[

3ψ(z)r+
2

z4f(z)

]
z=1

.

(5.18)
Using the L’Hôpital’s rule and the values f

′
(1) = −4r2

+, f
′′
(1) = 4r+

2 + 32ar+
2,

we may express Eq. (5.18) in the following form:

ψ
′′
(1) = −5

4
ψ
′
(1) + 8aψ

′
(1)− φ

′2
(1)ψ(1)

16r+
2

. (5.19)
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Finally, using the boundary condition Eq. (5.14), the Taylor expansion Eq. (5.17)
can be rewritten as,

ψ(z) =
1

4
ψ(1) +

3

4
ψ(1)z + (1− z)2

[
−15

64
+

3a

2
− φ′2(1)

64r+
2

]
ψ(1). (5.20)

Near the horizon, z = 1, from Eq. (5.12) we may write

φ
′′
(1) =

1(
1 + 4b

r2
+
φ′2(1)

) [φ′(1)− 8b

r+
2
φ
′3(1)− ψ2(1)φ

′
(1)

2
e−2bφ′2(z)/r2

+

]
. (5.21)

In obtaining Eq. (5.21) we have considered that the metric function, f(z), can
also be Taylor expanded as in Eq. (5.16), Eq. (5.17).

Substituting Eq. (5.21) in Eq. (5.16) and using Eq. (5.14) we finally obtain,

φ(z) = −φ′(1)(1− z)+
1

2
(1− z)2

[
1− 8b

r+
2
φ′2(1)− ψ2(1)

2
e−2bφ′2(z)/r2

+

]
φ′(1)(

1 + 4b
r2
+
φ′2(1)

) .
(5.22)

Now, using the method prescribed by the matching technique[213], we match the
solutions Eqs. (5.15a), (5.15b), (5.20) and (5.22) at the intermediate point z = zm.
It is very much evident that the matching of the two asymptotic solutions smoothly
at z = zm requires the following four conditions:

µ− ρz2
m

r2
+

= β(1− zm)− β

2
(1− zm)2

[
1− 8bβ̃2

1 + 4bβ̃2
− α2

2

e−2bβ̃2

1 + 4bβ̃2

]
(5.23)

−2ρzm
r2

+

= −β + β(1− zm)

[
1− 8bβ̃2

1 + 4bβ̃2
− α2

2

e−2bβ̃2

1 + 4bβ̃2

]
(5.24)

D+z
λ+
m =

α

4
+

3αzm
4

+ α(1− zm)2

[
−15

64
+

3a

2
− β̃2

64

]
(5.25)

λ+D+z
λ+
m =

3αzm
4
− 2αzm(1− zm)

[
−15

64
+

3a

2
− β̃2

64

]
(5.26)

where we have set ψ(1) = α, −φ′(1) = β (α, β > 0), β̃ = β
r+

and D− = 0

[cf.Eq. (5.15b)].
From Eq. (5.24), using Eq. (5.7), we obtain,

α2 =
2zm

(1− zm)
e2bβ̃2

(
1 +

4bβ̃2(3− 2zm)

zm

)(
Tc
T

)3(
1− T 3

T 3
c

)
. (5.27)
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Since, in our entire analysis we intend to keep terms which are only linear in the
non-linear parameter, b, Eq. (5.27) can be approximated as,

α2 ≈ 2zm
(1− zm)

(
1 +

6bβ̃2(2− zm)

zm

)(
Tc
T

)3(
1− T 3

T 3
c

)
. (5.28)

Here the quantity Tc may be identified as the critical temperature for condensa-
tion and is given by,

Tc =

[
2ρ

β̃π3

(
1− 12bβ̃2(1− zm)

zm

)] 1
3

. (5.29)

Now from Eq. (5.25) and Eq. (5.26) we obtain,

D+ =
(3z2

m + 5zm)

4 (λ+ + (2− λ+)zm)

(
1

zm

)λ+

α, (5.30)

β̃ = 8

[
−15

64
+

3a

2
− (3z2

m + 5zm)(1 + λ+)

4 (λ+ + (2− λ+)zm) (1− 4zm + 3z2
m)

+
(1 + 6zm)

4 (1− 4zm + 3z2
m)

] 1
2

.

(5.31)
Finally, using Eqs. (5.7), (5.28) and (5.30), near the critical temperature, T ∼

Tc, we may write the expectation value, 〈O2〉, of the condensation operator in the
following form4:

〈O2〉
1
λ+

Tc
=

(
π

zm

)[
(3z2

m + 5zm)

4 (λ+ + (2− λ+)zm)

] 1
λ+

[
6zm

(1− zm)

(
1 +

6bβ̃2(2− zm)

zm

)(
1− T

Tc

)] 1
2λ+

.

(5.32)
In Eq. (5.32) we have normalized 〈O2〉 by the critical temperature, Tc, to obtain
a dimensionless quantity[213]. Proceeding along the same line of analysis we can
also calculate the critical temperature, Tc, and condensation operator, 〈O2〉, for
the holographic superconductors with LNE. The corresponding expressions for the
above mentioned quantities are given below:

The critical temperature for condensation:

Tc =

[
2ρ

β̃π3

(
1− 3bβ̃2(1− zm)

2zm

)] 1
3

. (5.33)

Order parameter for condensation:

〈O2〉
1
λ+

Tc
=

(
π

zm

)[
(3z2

m + 5zm)

4 (λ+ + (2− λ+)zm)

] 1
λ+

[
6zm

(1− zm)

(
1 +

3bβ̃2(2− zm)

4zm

)(
1− T

Tc

)] 1
2λ+

.

(5.34)
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Figure 5.1: Plots of critical temperature (Tc − ρ) and normalized condensation

operator (〈O2〉
1
λ+ /Tc − T/Tc) for different electrodynamic theories. The green, blue

and red curves correspond to Maxwell, LNE and ENE, respectively.

In the next section we shall be mainly concerned with the effects of magnetic
field on this s-wave holographic superconductor with the two different types of non-
linear electrodynamics mentioned earlier. But, before that we would like to make
some comments on the results obtained so far. These may be put as follows:

• From Eq. (5.29) (and Eq. (5.33)) it is evident that in order to have a meaningful
notion of the critical temperature, Tc, there must have an upper bound to the
non-linear coupling parameter, b. The upper bounds corresponding to two
non-linear theories are given below:

b ≤


zm(λ+ + 2zm − λ+zm)

12(1 + 96aλ+ − 6(32a− 13)(λ+ − 1)zm + 3(32a− 5)(λ+ − 2)z2
m)
, for ENE

2zm(λ+ + 2zm − λ+zm)

3(1 + 96aλ+)− 18(32a− 13)(λ+ − 1)zm + 9(32a− 5)(λ+ − 2)z2
m

, for LNE

(5.35)

Note that, with our choice zm = 0.5 and for fixed values of a, this upper bound
is smaller for ENE compared to LNE.

4Here we have used the relation (1− t3) = (1− t)(1 + t+ t2) for any arbitrary variable t.
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• The critical temperature, Tc, decreases as we increase the values of the non-
linear parameter, b (Table 5.1, Table 5.2). This feature is general for the two
types of holographic superconductors considered in this paper. It must be
remarked that, without any non-linear corrections (b = 0) the critical temper-
ature is larger than the above two cases. For example, Tc = 0.1907ρ1/3 for
a = 0.2, zm = 0.5. This suggests the onset of a harder condensation. Another
nontrivial and perhaps the most interesting feature of our present analysis is
that, for a particular value of the non-linear parameter, b, the value of the crit-
ical temperature, Tc, for the holographic condensate with ENE is smaller than
that with LNE (Table 5.1, Table 5.2) showing stronger effects of the former
on the condensation. It is also noteworthy that similar feature was obtained
numerically by the authors of Ref.[236] in the planar Schwarzschild-AdS black
hole background.

• The condensation gap for the holographic condensate with non-linear electro-
dynamics is more than that with Maxwell electrodynamics (Fig. 5.1). On top
of that, holographic superconductors with ENE exhibit larger gap compared
with that with LNE. This suggests that the formation of the scalar hair is
more difficult for the holographic condensate with ENE[236].

• The Gauss-Bonnet parameter (a) also has important consequences in the for-
mation of the holographic condensate. From Table 5.1 and Table 5.2 it is clear
that as we increase the value of a the critical temperature for condensation
decreases. This means that the increase of a makes the formation of scalar
hair difficult. This indeed shows that both a and b has the same kind of in-
fluences on the formation of the hair. However, from Fig. 5.2 we observe that
Tc decreases more rapidly with b than with a. This clearly suggests that the
Born-Infeld parameter (b) modifies the critical temperature more significantly
than the Gauss-Bonnet parameter (a).

• The expectation value of the condensation operator, 〈O2〉, vanishes at the crit-
ical point T = Tc and the condensation occurs below the critical temperature,
Tc (see the right panel of Fig. 5.1). Moreover, form Eq. (5.32) (and Eq. (5.34))
we observe that 〈O2〉 ∝ (1−T/Tc)1/2 which shows the mean field behaviour of
the holographic condensates and signifies that there is indeed a second order
phase transition (critical exponent 1/2). This also admires the consistency of
our analysis.
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Figure 5.2: Left panel: Variation of Tc with a for different values of b (top for ENE,
bottom for LNE); Right panel: Variation of Tc with b for different values of a (top
for ENE, bottom for LNE). We have chosen zm = 0.5 and ρ = 1.

b a = −0.19 a = −0.10

ENE LNE ENE LNE

0.0002 0.2113 0.2174 0.2005 0.2081
0.0004 0.2039 0.2165 0.1910 0.2070
0.0006 0.1958 0.2157 0.1805 0.2060
0.0008 0.1871 0.2148 0.1686 0.2049
0.0010 0.1775 0.2139 0.1547 0.2039
0.0012 0.1667 0.2130 0.1377 0.2028
0.0014 0.1542 0.2122 0.1149 0.2016
0.0016 0.1394 0.2113 0.0753 0.2005
0.0018 0.1204 0.2104 — —
0.0020 0.0923 0.2094 — —

Table 5.1: Numerical values of coefficients of Tc for different values of the parameters
b and a < 0.
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b a = 0.10 a = 0.25

ENE LNE ENE LNE

0.0002 0.1834 0.1943 0.1725 0.1861
0.0003 0.1766 0.1936 0.1636 0.1852
0.0004 0.1692 0.1928 0.1537 0.1843
0.0005 0.1610 0.1920 0.1421 0.1834
0.0006 0.1520 0.1913 0.1285 0.1824
0.0007 0.1417 0.1906 0.1110 0.1815
0.0008 0.1296 0.1898 0.0852 0.1805
0.0009 0.1148 0.1890 — —
0.0010 0.0946 0.1882 — —

Table 5.2: Numerical values of coefficients of Tc for different values of the parameters
b and a > 0.

5.4 Magnetic response: Meissner-like effect and

critical magnetic field

The bizarre properties of superconductors under the influence of external magnetic
fields is one of the most significant features these objects possess. In fact, the
magnetic response of superconductors helps us to classify them into two distinct
classes, namely, type I and type II superconductors. Apart from this, formation
of vortex lattice in type II superconductors is also an important aspect that has
been taken into consideration over the years. But, the Meissner effect is one of the
defining properties of a superconductor that we will describe holographically in this
section. It is observed that when immersed in an external magnetic field, ordinary
superconductors expel magnetic field lines thereby exhibiting perfect diamagnetism
when the temperature is lowered through Tc. This is the Meissner effect[203]. But,
for the holographic superconductors in the probe limit we neglect the backreaction
of the scalar field on the background geometry. As a result, the superconductors
are not able to repel the background magnetic field and the magnetic flux always
penetrates the condensates due to the fact that the free energy difference between the
normal and the superconducting states are not sufficient to repel these fluxes from
such a large volume[194]. Instead, the scalar condensates adjust themselves such
that they only fill a finite strip in the plane which reduces the total magnetic field
passing through it. In other words, the effect of the external magnetic field is such
that it always tries to reduce the condensate away making the condensation difficult
to set in. Considering this apparent similarity with the conventional Meissner effect,
this holographic phenomena is referred to as Meissner-like effect [245].

In order to study the magnetic response of holographic superconductors we add
an external static magnetic field in the bulk. According to the gauge/gravity duality,
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the asymptotic value of the magnetic field in the bulk corresponds to a magnetic field
in the boundary field theory, i.e., B(x) = Fxy(x, z → 0)[245, 246]. Considering the
fact that, near the critical magnetic field, Bc, the value of the condensate is small,
we may consider the scalar field ψ as a perturbation near Bc. This allows us to adopt
the following ansatz for the gauge field and the scalar field[230, 234, 245, 246]:

Aµ =
(
φ(z), 0, 0, Bx, 0

)
, (5.36a)

ψ =ψ(x, z). (5.36b)

With the help of Eqs. (5.8), (5.36a) and (5.36b) we may write the equation of
motion for the scalar field ψ(x, z) as[230, 234, 239],

ψ′′(x, z)−ψ
′(x, z)

z
+
f ′(z)

f(z)
ψ′(x, z)+

r2
+φ

2(z)ψ(x, z)

z4f 2(z)
+

1

z2f(z)

(
∂2
xψ −B2x2ψ

)
+

3r2
+ψ(x, z)

z4f(z)
= 0

(5.37)
In order to solve Eq. (5.37) we shall use the method of separation of variables[245,

246]. Let us consider the solution of the following form:

ψ(x, z) = X(x)R(z). (5.38)

As a next step, we shall substitute Eq. (5.38) into Eq. (5.37). This yields the
following equation which is separable in the two variables, x and z.

z2f(z)

[
R′′(z)

R(z)
+
R′(z)

R(z)

(
f ′(z)

f(z)
− 1

z

)
+
r2

+φ
2(z)

z4f 2(z)
+

3r2
+

z4f(z)

]
−
[
−X

′′(x)

X(x)
+B2x2

]
= 0.

(5.39)
Note that, the x dependent part of Eq. (5.39) is localized in one dimension. More-
over, this is exactly solvable since it maps the quantum harmonic oscillator. This
may be identified as the Schrödinger equation for the corresponding quantum har-
monic oscillator with a frequency determined by B[230, 234, 245, 246],

−X ′′(x) +B2x2X(x) = CnBX(x) (5.40)

where Cn = 2n + 1 (n = integer). Since, the most stable solution corresponds to
n = 0[230, 234, 245], the z dependent part of Eq. (5.39) may be expressed as

R′′(z) +

(
f ′(z)

f(z)
− 1

z

)
R′(z) +

r2
+φ

2(z)R(z)

z4f 2(z)
+

3r2
+R(z)

z4f(z)
=
BR(z)

z2f(z)
. (5.41)

Now at the horizon, z = 1, using Eqs. (5.14) and (5.41), we may write the
following equation:

R′(1) =

(
3

4
− B

4r2
+

)
R(1). (5.42)

On the other hand, at the asymptotic infinity, z → 0, the solution of Eq. (5.41)
can be written as

R(z) = D−z
λ− +D+z

λ+ . (5.43)
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Working in the same line as of the previous section, we shall choose D− = 0 here.
Near the horizon, z = 1, Taylor expansion of R(z) gives

R(z) = R(1)−R′(1)(1− z) +
1

2
R′′(1)(1− z)2 + · · · (5.44)

where we have considered R′(1) < 0 without loss of generality.
Now, calculating R′′(1) from Eq. (5.41) and using Eq. (5.42) we may write from

Eq. (5.44)

R(z) =
1

4
R(1) +

3z

4
R(1) + (1− z)

B

4r2
+

R(1) (5.45)

+
1

2
(1− z)2

[
3a− 15

32
+ (1− 16a)

B

16r2
+

+
B2

32r4
+

− φ′2(1)

32r2
+

]
R(1)

where in the intermediate step we have used the Leibniz rule [cf. Eq. (5.18)].
Finally, matching the solutions Eqs. (5.43) and (5.45) at the intermediate point

z = zm and performing some simple algebraic steps we arrive at the following equa-
tion in B:

B2 +2Br2
+

[
8 (λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)
+ (1− 16a)

]

+

[
(1 + 3zm)λ+ − 3zm

2(1− zm)(λ+ − λ+zm + 2zm)
+

(
3a− 15

32
− φ′2(1)

32r2
+

)]
32r4

+ = 0.(5.46)

Eq.(5.46) is quadratic in B and its solution is found to be of the following
form[239]:

B = r2
+

[(
8 (λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)
+ (1− 16a)

)2

−

(
16 [(1 + 3zm)λ+ − 3zm]

(1− zm)(λ+ − λ+zm + 2zm)

+

(
96a− 15− φ′2(1)

r2
+

))] 1
2

− r2
+

(
8 (λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)
+ (1− 16a)

)
.

(5.47)

We are interested in determining the critical value of the magnetic field strength,
Bc, above which the superconducting phase disappears. In this regard, we would like
to consider the case for which B ∼ Bc. Interestingly, in this case the condensation
becomes vanishingly small and we can neglect terms that are quadratic in ψ. Thus,
the equation of motion corresponding to the gauge field (Eq. (5.12)), φ, may be
written as (

1 +
4bz4φ′2(z)

r2
+

)
φ′′(z)− 1

z
φ′(z) +

8bz3

r2
+

φ′3(z) = 0. (5.48)
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In order to solve the above Eq. (5.48) we consider a perturbative solution of the
following form:

φ(z) = φ0(z) +
b

r2
+

φ1(z) + · · · (5.49)

where φ0(z), φ1(z), · · · are independent solutions and the numbers in the suffices of
φ(z) indicate the corresponding order of the non-linear parameter (b).

Substituting Eq. (5.49) in Eq. (5.48) we obtain[
φ′′0(z)− φ′0(z)

z

]
+

b

r2
+

[
φ′′1(z)− φ′1(z)

z
+ 4z4φ′′0(z)φ′20 (z) +

8z3

r2
+

φ′30 (z)

]
+ O(b2) = 0.

(5.50)
Equating the coefficients of b0 and b1 from the l.h.s of Eq. (5.50) to zero we may

write

b0 : φ′′0(z)− φ′0(z)

z
= 0 (5.51a)

b1 : φ′′1(z)− φ′1(z)

z
+ 4z4φ′′0(z)φ′20 (z) +

8z3

r2
+

φ′30 (z) = 0 (5.51b)

Now, using the boundary condition Eq. (5.15a) we may write the solution of
Eq. (5.51a) as

φ0(z) =
ρ

r2
+

(1− z2). (5.52)

Using Eq. (5.52) we may simplify Eq. (5.51b) as

φ′′1(z)− φ′1(z)

z
− 96z6

(
ρ

r2
+

)3

= 0. (5.53)

As a next step, using the asymptotic boundary condition Eq. (5.15a), from
Eq. (5.53) we obtain the solution of φ1(z) as

φ1(z) =
2ρ3

r6
+

(z8 − 1)− ρ

r2
+

(z2 − 1). (5.54)

Substituting Eqs. (5.52) and (5.54) in Eq. (5.49) we finally obtain the solution
of the gauge field as

φ(z) =
ρ

r2
+

(1− z2)

[
1 +

b

r2
+

− 2bρ2

r6
+

(1 + z4)(1 + z2)

]
. (5.55)

The solution of the gauge field for the holographic superconductor with LNE
may be obtained by similar procedure and is given below:

φ(z) =
ρ

r2
+

(1− z2)

[
1 +

b

r2
+

− bρ2

4r6
+

(1 + z4)(1 + z2)

]
. (5.56)
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Note that, in the above calculations we have only retained terms which are linear
in the non-linear parameter b.

At the asymptotic boundary of the AdS space, z = 0, the solution Eq. (5.55)
can be approximated as

φ(z) ≈ ρ

r2
+

[
1 +

b

r2
+

− 2bρ2

r6
+

]
− ρ

r2
+

(
1 +

b

r2
+

)
z2. (5.57)

Now, comparing Eq. (5.57) with Eq. (5.15a) we may identify the chemical po-
tential, µ, as

µ =
ρ

r2
+

[
1 +

b

r2
+

− 2bρ2

r6
+

]
(5.58)

Near the horizon, z = 1, we may write from Eq. (5.48)

φ′′(1) = φ′(1)− 12b

r2
+

φ′3(1) + O(b2) (5.59)

Substituting Eq. (5.59) into Eq. (5.16) and using the boundary condition Eq. (5.14)
we may write

φ(z) = −φ′(1)(1− z) +
1

2
(1− z)2

(
φ′(1)− 12b

r2
+

φ′3(1)

)
. (5.60)

Matching the solutions Eq. (5.60) and Eq. (5.15a) at the intermediate point zm
and using Eq. (5.58) we can find the following relation:

(β − 2η)(2η3 − 6β3 − η) = 0 (5.61)

where we have set −φ′(1) = β and ρ
r2
+

= η. One of the solutions of this quartic

equation can be written as
β = 2η

which implies

φ′(1) = −2ρ

r2
+

. (5.62)

As a final step, substituting Eq. (5.62) into Eq. (5.47) and using Eqs. (5.7) and
(5.29) we obtain the critical value of the magnetic field strength as

Bc

T 2
c

= π2

(
1 +

12bβ̃2(1− zm)

C 2zm

)[
β̃C −M

(
T

Tc

)3
]

(5.63)

In a similar manner we can determine the critical value of magnetic strength,
Bc, for the holographic superconductor with logarithmic electrodynamics. The ex-
pression for Bc for this model is given below:

Bc

T 2
c

= π2

(
1 +

3bβ̃2(1− zm)

2C 2zm

)[
β̃C −M

(
T

Tc

)3
]
. (5.64)
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In Eqs. (5.63) and (5.64) the terms C and M are given by

C =

(
1− A −M 2

β̃2
x6

) 1
2

,

M = 1− 16a+
8(λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)

where

A =

[
96a− 15 + 16

(
(1 + 3zm)λ+ − 3zm

(1− zm)(λ+ − λ+zm + 2zm)

)]
.

Here, we have normalized Bc by the square of the critical temperature, Tc, such
that the critical magnetic field strength, Bc, becomes dimensionless.

In Fig. 5.3 we have plotted Eq. (5.63) (and Eq. (5.64)) as a function of T/Tc.
From these plots it is evident that above the critical magnetic field (Bc) the su-
perconductivity is completely destroyed which is also the case for ordinary type II
superconductors[203]. From the above analysis we can explain the effects of the
Gauss-Bonnet coupling parameter (a) and the non-linear parameter (b) on the holo-
graphic condensates. First of all we note that, for fixed values of a the critical mag-
netic field (Bc) increases with b. Secondly, the critical magnetic field corresponding
to the Maxwell case (b = 0) is lower than those for ENE and LNE. This indicates that
the critical magnetic field strength is higher in presence of the non-linear corrections
than the usual Maxwell case. Moreover, this increment is larger for the holographic
condensate with ENE than that with LNE. Finally, if we vary a while keeping b con-
stant similar effects are observed, i.e., the critical field strength increases with the
Gauss-Bonnet parameter (a). From the preceding discussion we may infer that both
the higher order corrections indeed make the condensation harder to form. More-
over, between the two non-linear electrodynamics, the exponential electrodynamics
has stronger effects on the formation of the holographic s-wave condensate namely,
the formation of the scalar hair is more difficult for holographic superconductor with
ENE. This can be explained by noting that the increase in the critical field strength
(Bc) tries to reduce the condensate away making the condensation difficult to set
in[230, 234, 245].

5.5 Conclusive remarks

In this chapter, considering the probe limit, we have studied a holographic model of
superconductor in the higher curvature planar Gauss-Bonnet-AdS black hole back-
ground. We have also taken into account two different types of non-linear electro-
dynamics (exponential and logarithmic non-linear electrodynamics) in the matter
Lagrangian which may be considered as higher derivative corrections to the gauge
fields in the usual Abelian gauge theory. In addition to that, we have made an
analytic investigation on the effects of an external magnetic field on these supercon-
ductors.
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Figure 5.3: Plots of Bc/T
2
c − T/Tc for different values of a and b.

The primary motivations of the present chapter are to study the effects of several
non-linear corrections to the gravity and matter sectors of the action (that describes
the holographic superconductivity) on the holographic s-wave condensates both in
presence as well as absence of an external magnetic field. Along with these, we aim
to make a comparative study among the usual Maxwell electrodynamics and the two
NEDs considered in the paper (ENE, LNE) regarding their effects on the formation
of holographic condensates. Based on purely analytic methods we have successfully
addressed these issues. The main results of our analysis can be put as follows:

• Non-linear electrodynamics has stronger effects on the condensates than the
usual Maxwell case. The critical temperature for condensation (Tc) decreases
as we increase the values of the non-linear parameter (b) as well as the Gauss-
Bonnet coupling parameter (a) (Fig. 5.1, Tables4.1,4.2). Moreover, b modifies
the critical temperature more significantly than a (Fig. 5.2). On the other
hand, the normalized order parameter (〈O2〉1/λ+/Tc) increases with the in-
crease of b and a (Fig. 5.1). This implies that, in the presence of the higher
order corrections the formation of the scalar hairs become difficult.

• The variation of the order parameter with temperature, 〈O2〉 ∝ (1−T/Tc)1/2,
exhibits a mean-field behavior. Also, the value of the associated critical ex-
ponent is 1/2, which further ensures that the holographic condensates indeed
undergo a second order phase transition in going from normal to supercon-
ducting phase.
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• There exists a critical magnetic field Bc above which the superconductivity
ceases to exist (Fig. 5.3). This property is similar to that of ordinary type II
superconductors [203]. Also, the critical magnetic field strength (Bc) increases
as we increase both b and a. The increasing magnetic field strength tries to
reduce the condensate away completely making the condensation difficult to
form.

• From Figs:5.1,5.3 and Tables4.1 and 4.2 we further observe that for particular
parameter values Tc is less in holographic superconductor with ENE than that
with LNE whereas, 〈O2〉1/λ+/Tc and Bc is more in the previous one. These
results suggest that the exponential electrodynamics exhibit stronger effects
than the logarithmic electrodynamics.

It is reassuring to note that, similar conclusions were drawn in Ref.[236] where
numerical computations were performed in this direction. Our analytic calculations
provide further confirmations regarding this issue. However, the novel feature of our
present analysis is that we have been able to study the effect of the higher curvature
corrections which was not performed explicitly in Ref.[236].

So far we are dealing with holographic superconductors within the framework
of the AdS/CFT correspondence. In doing so we are assuming that the scale as
well as the Lorentz symmetry of the boundary field theory is well preserved. In
other words, we are in the relativistic regime. But, the whole analysis can also
be performed in the non-relativistic regime where, although, the scaling symmetry
is well preserved the Lorentz symmetry is broken explicitly. However, the scaling
symmetry is anisotropic in the sense that there exists a certain degree of anisotropy
between time and space. As a result of this non-linearity, the boundary field theory is
non-relativistic and a suitable modification of the original AdS/CFT duality must be
taken into consideration to describe dual holographic models, such as the holographic
superconductors, which we are going to explore in the next chapter. From practical
points of view, this may be considered as a more realistic holographic description of
condensed matter systems owing to the inherent non-relativistic nature of ordinary
condensed matter systems including superconductors.



Chapter 6

Holographic Lifshitz
Superconductors and Their
Magnetic Response

6.1 Overview

The emergence of the AdS/CFT correspondence[170]-[175] has opened up new direc-
tions in dealing with the strongly correlated systems. Since its discovery, this duality
has been extensively used in several areas in physics such as, fluid/gravity correspon-
dence, QCD, and many others[183]-[190]. In addition, its lucidity and wide range
of applicability have led physicists to apply this correspondence in order to under-
stand several strongly coupled phenomena of condensed matter physics[189],[193]-
[197]. But in many examples of condensed matter physics it is often observed that
the behaviors of the systems are governed by Lifshitz-like fixed points. These fixed
points are characterized by the anisotropic scaling symmetry

t→ λzt, xi → λxi (i = 1, 2, · · · , d). (6.1)

The exponent z is called the “dynamical critical exponent”, and it describes the
degree of anisotropy between space and time[259, 260]. These are non-Lorentz in-
variant points and hence the systems are non-relativistic in nature[259]-[269].

There have been several attempts to describe these systems holographically using
the standard prescriptions of gauge/gravity duality. But due to the nonrelativistic
nature of these systems the dual description has been modified and it provides a
gravity dual for systems which are realized by nonrelativistic CFTs[261]-[269]. The
gravity dual to Lifshitz fixed points is described by the Lifshitz metric[262]:

ds2 = −r2zdt2 +
dr2

r2
+ r2dxidxi (6.2)

which respects the scale transformation Eq. (6.1) along with an additional scaling
r → λ−1r. In the limit z = 1 it gives the AdSd+2 metric. In Eq. (6.2) dx2

i =

104
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dx2
1 + dx2

2 + · · ·+ dx2
d and r ∈ (0,∞). Note that, in writing the above metric we set

the radius of the AdS space to unity (L = 1) in our analysis. On the other hand,
in order to describe finite temperature systems, exact black hole solutions in the
asymptotically Lifshitz space-time have been found[267]-[269].

In the previous Chapter 4 and Chapter 5 we became familiar with the role of
AdS/CFT duality in describing diverse properties of high Tc superconductors. There
we studied these holographic models of superconductor by including several higher
derivative corrections to the usual Einstein gravity (Gauss-Bonnet correction) as
well as in the Maxwell gauge sector (Born-Infeld, exponential and logarithmic cor-
rections). In addition, the response of the holographic superconductors in external
magnetic fields was a crucial issue that we exploited in Section 5.4 in Chapter 5.
Further extension of these studies show interesting vortex and droplet solutions
for these models[245]-[258]. Very recently promising conclusions have been drawn
regarding the effects of various corrections to the Einstein-Maxwell sector on the
aforementioned solutions[258].

Over the past few years a series of works have been attempted to understand
various properties of HS with Lifshitz scaling[276]-[290]. These works demonstrate
interesting effects of anisotropy on the characterizing properties of HS with Lifshitz
scaling, and also the effects of external magnetic fields on them. Despite these
attempts several other important issues have been overlooked which we address in
Ref.[287] and based on that paper we intend to discuss these issues in the present
chapter. Here we elaborate the following points: (i) We compute the vortex and
droplet solutions for a Lifshitz HS. This study is motivated by the observation
that the anisotropic scaling plays an important role in affecting the behavior of the
holographic condensates[276]-[286], and (ii) We study the effects of anisotropy on
the holographic condensates. We find that the critical parameters of phase transition
are affected by the anisotropy in the system.

The present chapter is organized as follows: In Section 6.2 we very briefly review
Lifshitz holographic superconductors. We develop the vortex lattice solution for
the s-wave superconductors in a Lifshitz black hole background in Section 6.3.1. In
Section 6.3.2 we compute a holographic droplet solution for this superconductor in
the Lifshitz soliton background. Finally, in Section 6.4 we draw our conclusions.

6.2 Lifshitz holographic superconductors: a brief

review

In this chapter we mainly discuss the magnetic response of holographic s-wave Lif-
shitz superconductors (henceforth HLS). In doing so, we shall not provide the con-
structional details of these models, rather, we shall build upon important solutions
(vortex and droplet solutions) that are most relevant to our study of magnetic re-
sponses. Nevertheless, in this section we review very briefly the properties of HLSs
that have already been explored in the literature which will be helpful to find mo-
tivations for our study of the mentioned solutions in rest of this chapter. The
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discussion of this section is mainly borrowed from Ref.[283] and consists of three
parts as enumerated below.

(1) Basic ingredients: In order to construct a (d + 1)-dimensional super-
conductor which respects the anisotropic scaling symmetry (Eq. (6.1)) a (d + 2)-
dimensional Lifshitz space-time which contains a black hole is considered. This
(d+ 2)-dimensional space-time is in fact the gravity dual to this holographic model
having the metric Eq. (6.2)[265, 266, 267, 276]. The action that admits this kind of
geometry is found to have the following form[266, 267]:

S =
1

16πG

∫
dd+2x

√
−g
(
R− 2Λ− 1

2
∂µφ∂

µφ− 1

4
ebφFµνF

µν

)
. (6.3)

In Eq. (6.3) R is the Ricci scalar, Λ is the cosmological constant, φ is a massless
scalar field which is coupled to the Abelian gauge field Aµ and Fµν is the Abalian
gauge field strength. The finite temperature generalization of Eq. (6.2) which es-
sentially gives a black hole metric with finite temperature (needed to realize the
superconducting phase) can be written as[267],

ds2 = −r2zf(r)dt2 +
dr2

r2f(r)
+ r2

d∑
i=1

dx2
i (6.4)

where

f(r) = 1− rz+d+

rz+d
, (6.5)

Λ = −(z + d)(z + d− 1)

2
. (6.6)

In Eq. (6.3) the auxiliary gauge field Fµν modifies the asymptotic symmetry of the
geometry from AdS to Lifshitz[265, 266, 267, 276]. In addition, to support the black
hole geometry (Eq. (6.4)) the backgrounds for φ and Frt are given by[266, 267],

ebφ = r−2d b2 =
2d

z − 1
(6.7)

q2 = 2(z − 1)(z + d) Frt =
√

2(z − 1)(z + d)rz+d−1. (6.8)

By analytically continuing the black hole metric Eq. (6.4) to the Euclidean sector
the Hawking temperature of the black hole is obtained as

T =
(z + d)rz+

4π
(6.9)

which is also the temperature of the dual field theory as prescribed by the holo-
graphic dictionary.

In order to obtain a non-zero holographic superconducting condensate the matter
action is chosen as

SM =

∫
dd+2x

√
−g
(
−1

4
FµνF

µν − |(∂µ − iqAµ)ψ|2 −m2|ψ|2
)

(6.10)
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where, Fµν is the U(1) gauge field strength which is different from the auxiliary
field Fµν introduced in Eq. (6.3) and ψ is the complex scalar field with mass m and
charge q which eventually condensates below a certain critical temperature, Tc. Note
that, this matter action is none other than the Abelian-Higgs action introduced in
Refs.[191]-[197].

(2) Boundary conditions and methodology: The method of obtaining
properties of holographic superconductors in the framework of AdS/CFT correspon-
dence was presented in Chapter 4 and Chapter 5. In the non-relativistic framework
the same line of analysis is followed for analyzing Lifshitz superconductors. In other
words, the equations of motion for the scalar and gauge fields are obtained from
the variation of the action Eq. (6.10) under suitable ansatz, namely, ψ = ψ(r) and
Aµ = (φ(r), 0, 0, · · · ). As a next step, these equations of motion are solved by impos-
ing boundary conditions on the fields in accordance with the holographic dictionary.
These are expressed as,

(i) At the asymptotic boundary r →∞,

ψ(r) ≈ C1

r4−
+

C2

r4+
, (6.11)

φ(r) ≈ µ− ρ

rd−z
(z < d) and φ(r) ≈ µ− ρ ln(ξr) (z = d), (6.12)

where µ, ρ, ξ are constants, 4± =
(z + d)±

√
(z + d)2 + 4m2

2
, and the coefficients

C1, C2 are related to the expectation values of the operators dual to ψ with scaling
dimension 4− and 4+, respectively.

(ii) At the black hole horizon r = r+, φ(r+) = 0 and ψ(r+) is regular.

Now, for spontaneous breaking of U(1) gauge symmetry the coefficient C1 is set to

zero and the mass squared of the scalar field is chosen as m2 > −(z + d)2

4
.

(3) Results: The results regarding the s-wave HLS may be summarized in the
following points.

(i) The critical temperature for condensation (Tc) decreases as the value of the
dynamic exponent (z) increases. Also, it decreases with the increase of the conformal
dimension (4+) of the dual operator. This indicates the fact that as one increases
the anisotropy of space-time the condensate becomes difficult to form.

(ii) The a.c. conductivity of the condensate becomes suppressed as z increases.
(iii) The variation of the order parameter for condensation with temperature

is found to be 〈O〉 ∼
(

1− T

Tc

) 1
2

. This is exactly the behavior predicted by the

Ginzburg-Landau theory and the critical exponent has the universal value
1

2
[203].

To summarize, as the dynamical critical exponent increases, the superconducting
phase transition becomes difficult to set in.
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6.3 Vortex and droplet solutions in holographic

Lifshitz superconductors

Having acquainted with the basic characteristic features of the holographic Lifshitz
superconductors, we motivate ourselves to study some other interesting properties of
these holographic models in the presence of an external magnetic field in the probe
limit. In this chapter we discuss interesting vortex and droplet solutions which are
observed in the HLSs.

6.3.1 Holographic vortex solution

In order to construct the holographic vortex lattice solution we consider a HLS in
(2 + 1)-dimensions. As a result, we need to take into account a dual gravity theory
in (3 + 1)-dimensional Lifshitz space-time. In other words, we are interested in the
case with d = 2 in all the relevant calculations (see the previous ??).

The background over which we intend to work is given by the following four
dimensional Lifshitz black hole[267, 283]:

ds2 = −β
2z

u2z
f(u)dt2 +

β2

u2
(dx2 + dy2) +

du2

u2f(u)
(6.13)

where we have chosen a coordinate u = 1
r
, such that the black hole horizon is at

u = 1 and the boundary (r → ∞) is at u = 0, for mathematical simplicity. In
Eq. (6.13)

f(u) = 1− uz+2, β(T ) =
( 4πT

z + 2

) 1
z

(6.14)

T being the Hawking temperature of the black hole.
The four dimensional matter action for our model is obtained from Eq. (6.10),

after setting d = 2, as,

SM =

∫
d4x
√
−g
(
−1

4
FµνF

µν − |(∂µ − iqAµ)ψ|2 −m2|ψ|2
)
. (6.15)

The equations of motion for the scalar field (ψ) and the gauge field (Aµ) can be
obtained from Eq. (6.15) as

1√
−g

∂µ
(√
−g∂µψ

)
− AµAµψ −m2ψ − iAµ∂µψ −

i√
−g

∂µ
(√
−gAµψ

)
= 0, (6.16)

1√
−g

∂µ
(√
−gF µν

)
= jν ≡ i (ψ∗∂νψ − ψ(∂νψ)∗) + 2Aν |ψ|2. (6.17)

In order to proceed further, we shall consider the following ansatz for the gauge
field[249]:

Aµ = (At, Ax, Ay, 0). (6.18)
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We shall make further assumption that the solutions are stationary, i.e., inde-
pendent of time t. Using these we may write Eqs. (6.16),(6.17) as a set of coupled
differential equations given by(

u3−z∂u
f(u)

uz+1
∂u +

A2
t

β2zf(u)
− m2

u2z

)
ψ =

−1

β2u2z−2

(
δijDiDjψ

)
(6.19a)

f(u)β2∂u

(
uz−1(∂uAt)

)
+ uz−14 At =

2β2At
u3−z ψ

2. (6.19b)

where i, j = x, y and 4 = ∂2
x + ∂2

y is the Laplacian operator.
In order to solve the above set of equations we shall invoke the following boundary

conditions[249]:
(i) At the asymptotic boundary (u→ 0), the scalar field ψ behaves as[283]

ψ ∼ C1u
4− + C2u

4+ (6.20)

where 4± =
(z+2)±

√
(z+2)2+4m2

2
and the coefficients C1, C2 are related to the ex-

pectation values of the operators dual to ψ with scaling dimension 4− and 4+

respectively. For our analysis we shall always choose the mass-squared, m2, of the

scalar field above its lower bound given by m2
LB = −(z+2)2

4
[283]. With this condition

both the modes are normalizable and we may choose either one of them as the ex-
pectation value of the dual operator while the other behaves as the source. For the
rest of our analysis we shall choose C1 = 0. Also, ψ is regular at the horizon, u = 1.

(ii) The asymptotic values of the gauge field Aµ give the chemical potential (µ)
and the external magnetic field (B) as,

µ = At(~x, u→ 0), B = Fxy(~x, u→ 0) (6.21)

where ~x = x, y. The regularity of the gauge fields demand that At = 0 and Ai is
regular everywhere on the horizon.

We further regard the external magnetic field as the only tuning parameter of our
theory. Following this, we assume µ and T of the boundary theory to be fixed and
change only B. Considering our model of holographic superconductor analogous to
ordinary type-II superconductor, there exists an upper critical magnetic field, Bc2 ,
below which the condensation occurs while above the Bc2 superconductivity breaks
down.

As a next step, we define the deviation parameter ε such that[249]

ε =
Bc2 −B

Bc2

, ε� 1. (6.22)

We expand the scalar field ψ, the gauge field Aµ as the following power series in
ε:

ψ(~x, u) = ε1/2ψ1(~x, u) + ε3/2ψ2(~x, u) + · · · , (6.23a)

Aµ(~x, u) = A(0)
µ + εA(1)

µ (~x, u) + · · · . (6.23b)
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From Eqs. (6.22) and (6.23) we may infer the following interesting points:
(i) Since we have chosen ε� 1, we are in fact very close to the critical point,
(ii) The positivity of the deviation parameter implies that Bc2 is always greater

than the applied magnetic field B. This ensures that there is always a non-trivial
scalar condensation in the theory that behaves as the order parameter.

Another important point that must be stressed is that, in Eq. (6.23b) A
(0)
µ is the

solution to the Maxwell’s equation in the absence of scalar condensate (ψ = 0). For
the rest of our analysis we shall choose the following ansatz:

A(0)
µ =

(
A0
t (u), 0, A0

y(x), 0
)
. (6.24)

Now matching the coefficients of ε0 on both sides of Eq. (6.19b) we may obtain,

A0
t = µ(1− u2−z), A0

x = 0, A0
y = Bc2x. (6.25)

On the other hand using Eqs. (6.23a),(6.25) and using the following ansatz for
ψ1(~x, u)[249]

ψ1(~x, u) = eipyφ(x, u; p) (6.26)

where p is a constant, we can write Eq. (6.19a) as,(
u3−z∂u

f(u)

uz+1
∂u +

(A
(0)
t (u))2

β2zf(u)
− m2

u2z

)
φ(x, u; p) =

1

β2u2z−2

[
∂2
x+(p−Bc2x)2

]
φ(x, u; p).

(6.27)
We may solve Eq. (6.27) by using the method of separation of variables[249]. In

order to do so we shall separate the variable φ(x, u; p) as follow:

φ(x, u; p) = αn(u)γn(x; p) (6.28)

with the separation constant λn (n = 0, 1, 2, · · · ).
Substituting Eq. (6.28) into Eq. (6.27) we may write the equations for αn(u) and

γ(x; p) as

u2−2zf(u)α
′′

n(u)−
[

(z + 1)f(u)

u2z−1
+ (z + 2)u3−z

]
α
′

n(u)− m2

u2z
α(u)

+
(A

(0)
t )2

β2zf(u)
α(u) =

λnBc2

β2u2z−2
αn(u),

(6.29a)(
∂2
X −

X2

4

)
γn(x; p) =

λn
2
γn(x; p).

(6.29b)

where we have identified X =
√

2Bc2

(
x− p

Bc2

)
. Following Ref.[245], we can write

the solutions of Eq. (6.29b) in terms of Hermite functions, Hn, with eigenvalue
λn = (2n+ 1) as

γn(x; p) = e−X
2/4Hn(X). (6.30)
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Note that we have considered λn to be an odd integer. Since the Hermite func-
tions decay exponentially with increasing X, which is the natural physical choice,
our consideration is well justified[245]. Moreover, λn = 1 corresponds to the only
physical solution for our analysis. Thus we shall restrict ourselves to the n = 0 case.
With this choice Eq. (6.30) can be written as

γ0(x; p) = e−X
2/4 ≡ exp

[
−Bc2

2

(
x− p

Bc2

)2
]
. (6.31)

From the above analysis it is clear that λn is independent of the constant p.
Therefore, a linear combination of the solutions eipyα0(u)γ0(x; p) with different val-
ues of p is also a solution to the EoM for ψ1. Thus, following this proposition, we
obtain

ψ1(~x, u) = α0(u)
∞∑

l=−∞

cle
iplyγ0(x; pl). (6.32)

At this point of discussion it is interesting to note that Eq. (6.32) is very similar
to the expression for the order parameter of the Ginzburg-Landau (G-L) theory of
type-II superconductors in the presence of a magnetic field[203]

ψG−L =
∑
l

cle
iplyexp

[
−(x− xl)2

2ξ2

]
(6.33)

where xl =
kΦ0

2πBc2

, Φ0 being the flux quanta and ξ is the superconducting coherence

length. Comparing Eq. (6.33) with Eq. (6.31) we may obtain the following relation
between the critical magnetic field and the coherence length as

Bc2 ∝
1

ξ2
(6.34)

which is indeed in good agreement with the result of the G-L theory[203].
We obtain the vortex lattice solution by appropriately choosing cl and pl. In order

to do so, we shall assume periodicity both in the x and y directions characterized
by two arbitrary parameters a1 and a2. The periodicity in the y direction may be
expressed as

pl =
2πl

a1ξ
, l ∈ Z. (6.35)

Using Eqs. (6.34),(6.35) we may rewrite Eq. (6.31) for different values of l as

γ(x, y) =
∞∑

l=−∞

cl exp

(
2πily

a1ξ

)
exp

[
− 1

2ξ2

(
x− 2πlξ

a1

)2
]

(6.36)

where the coefficient cl may be chosen as

cl = exp

(
−iπa2l

2

a2
1

)
. (6.37)
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As a next step, we rewrite Eq. (6.36) by using the elliptic theta function, ϑ3(v, τ),1

as

ψ1(~x, u) = α0(u)exp

(
−x2

2ξ2

)
ϑ3(v, τ). (6.38)

where v and τ may be identified as

v =
y − ix
a1ξ

, τ =
2πi− a2

a2
1

. (6.39)

Following Refs.[252],[258] and using the pseudo-periodicity of ϑ3(v, τ) we see that

the function σ(~x) ≡
∣∣∣exp

(
−x2

2ξ2

)
ϑ3(v, τ)

∣∣∣2 represents a vortex lattice in which the

fundamental region is spanned by the following two lattice vectors

~v1 = a1ξ∂y, ~v2 =
2πξ

a1

∂x +
a2

a1

∂y. (6.40)

We may put forward the main results of this subsection as follows:
(i) From Eq. (6.38) it is observed that the vortex solution does not depend upon

the dynamic exponent z. This suggests that, whether the boundary field theory
is relativistic or non-relativistic, the vortex structure remains the same. Although,
it is interesting to note that the exponent z may have non-trivial effects on the
condensation of the scalar field as is evident from Eq. (6.29a).

(ii) Eq. (6.38) also suggests that the structure of the vortex lattice is indeed
controlled by the superconducting coherence length, ξ. Moreover, the solution has a
Gaussian profile along the x direction. As the coherence length decreases the lattice
structure gradually dies out. This behavior is similar to that of ordinary type-II
superconductors[203].

6.3.2 Holographic droplet solution

While discussing holographic superconducting phase transitions in Chapter 4, Chap-
ter 5 and Section 6.3.1 we have considered the usual thermal phase transitions. In
these cases the superconducting phases appear below certain critical temperatures
after local U(1) symmetry breaking in the normal conducting phases. In this regard,
the normal conducting phase is mimicked by a charged black hole without scalar
hair (in the case of s-wave superconductors in which we are interested in) and the
superconducting phase is indeed a hairy black hole.

But, there is another kind of phase transition that leads to holographic supercon-
ductivity. In this case the normal state is an insulating phase which is described holo-
graphically by solitons (AdS or non-AdS)[80, 253]. This insulator/superconductor
phase transition may be viewed as a quantum phase transition as the solitons do

1Here we use the following definition of the elliptic theta function: ϑ(v, τ) =
∞∑

l=−∞

exp
(
2iπvl + iπτ l2

)
.
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not possess temperature and unlike black holes there is no such notion as horizon.
Before presenting the geometrical details of Lifshitz soliton, let us make ourselves
familiar with the holographic insulating phase and insulator/superconductor phase
transition. These are the main themes of this section and are useful for finding the
desired droplet solution.

There are evidences that in the phase diagram of high-Tc cuprate superconduc-
tors and layered organic conductors an insulating phase with antiferromagnetic order
is located near the superconducting phase[253]. Interestingly, the soliton geometry
realizes this kind of insulating phase[80, 253]. In fact, the spectrum of fluctuations
over the AdS soliton has a temperature independent mass gap which resembles
the insulating phase. Mathematically, if one considers a gauge theory on a mani-
fold Y × S1, with Y being a spatial manifold, then a mass gap implies that the
correlation function 〈O(y, z)O ′(y′, z)〉 vanishes exponentially when |y − y′| → ∞.
Here, y and z are coordinates in Y and S1, respectively[80]. Moreover, this phase
can be viewed as a confining vacuum state that decays into the black hole via
a (Hawking-Page) phase transition. This is dual to a confinement/deconfinement
phase transition[80]. In Ref.[269] it is shown that similar kind of phase transition
takes place in asymptotically Lifshitz space-times. This indicates the fact that an
insulator/superconductor phase transition is also possible under the framework of
non-relativistic holographic duality. As a matter of fact, this phenomena has been
studied explicitly in Ref.[283].

The insulator/superconductor phase transition is realized in the CFT language
as a phase transition in which a large enough U(1) chemical potential, µ, overcomes
the mass gap related to the scalar field (ψ) in the theory. This mechanism allows ψ
to condensate above a critical value, µc. The mechanism of condensate formation is
easier than that in the black hole since there is no horizon in the geometry.

In this section, considering the insulator/superconductor phase transition, we
extract the holographic droplet solution in the Lifshitz soliton background. To
achieve this we consider a planar Lifshitz soliton in 5-dimensions of the following
form[269, 283]:

ds2 = −r2dt2 + r2(dx2 + dy2) +
dr2

r2f(r)
+ r2zf(r)dχ2 (6.41)

where

f(r) =

(
1− 1

rz+3

)
. (6.42)

This soliton solution is obtained by performing a double Wick rotation of the 5-
dimensional Lifshitz black hole solution[269, 283]: dt → idχ, dχ → idt. In doing
so, the temporal anisotropy in the boundary space-time (Eq. (6.1)) is removed and
the dual boundary space-time possesses only spatial anisotropy: t → λt, xi →
λxi, χ → λzχ. Note that, in this geometry (Eq. (6.41)) the spatial direction χ is
compactified to a circle and has a periodicity χ = χ+ π. In fact, as we compactify
one of the space directions in this asymptotic Lifshitz spacetime, the Lifshitz soliton
is dual to a Scherk-Schwarz compactification of a 4-dimensional conformal gauge
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theory. This soliton geometry with an extra compactified spatial direction, precisely
generates this mass gap resembling an insulating phase. The dual field theory is
thus (2 + 1)-dimensional as is the case in the high-Tc superconductors. The Lifshitz
soliton geometry looks like a cigar in the (r, χ) directions having a tip at r = r0, say.

In our search for droplet solution it will be more convenient to work in polar
coordinates, x = ρ sinθ, y = ρ cosθ [254, 257]. With this choice of coordinates
Eq. (6.41) becomes

ds2 = −r2dt2 + r2(dρ2 + ρ2dθ2) +
dr2

r2f(r)
+ r2zf(r)dχ2. (6.43)

To obtain non-zero condensate we consider Maxwell-scalar action in 5-dimensions
as the matter action of our theory[191]-[197]:

SM =

∫
d5x
√
−g
(
− 1

4
FµνF

µν − |(∂µ − iqAµ)ψ|2 −m2|ψ|2
)
. (6.44)

In the probe limit we shall choose the following ansatz for the gauge field close
to the critical point of phase transition (µ ∼ µc, ψ ∼ 0)

A = µcdt+
1

2
Bρ2dθ (6.45)

where µ is the chemical potential and B is the constant external magnetic field
related to the vector potential.

We derive the equation of motion for the scalar field (ψ) by varying the action
Eq. (6.44) w.r.t. ψ and the result is

∂2
rF (t, r) +

(
f ′(r)

f(r)
+

(z + 4)

r

)
∂rF (t, r)− ∂2

t F (t, r)

r4f(r)
+

2iµc
r4f(r)

∂tF (t, r)

+

[
∂2
χH(χ)

r2z+2f 2(r)H(χ)
− m2

r2f(r)
− B2ρ2

4r4f(r)
+

µ2
c

r4f(r)
+
∂ρ (ρ∂ρU(ρ))

r4f(r)U(ρ)ρ

]
F (t, r) = 0.

(6.46)

In deriving Eq. (6.46) we have used Eq. (6.45) and considered the following ansatz

ψ(t, r, χ, ρ) = F (t, r)H(χ)U(ρ). (6.47)

Now, applying the method of separation of variables we finally obtain the fol-
lowing three equations:

1

ρ
∂ρ (ρ∂ρU(ρ))− 1

4
B2ρ2U(ρ) = −k2U(ρ),

(6.48a)

∂2
χH(χ) = −λ2H(χ),

(6.48b)

∂2
rF (t, r) +

(
f ′(r)

f(r)
+

(z + 4)

r

)
∂rF (t, r)− ∂2

t F (t, r)

r4f(r)

+
2iµc
r4f(r)

∂tF (t, r) +
1

r4f(r)

[
µ2
c −m2r2 − k2 − λ2

f(r)r2z−2

]
F (t, r) = 0, (6.48c)
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where λ and k are some arbitrary constants.
Eq. (6.48b) has the solution of the form

H(χ) = exp(iλχ) (6.49)

which gives λ = 2n, n ∈ Z, owing to the periodicity of H(χ) mentioned earlier.
Eq. (6.48a) is similar to the equation of a harmonic oscillator with k2 = l|B|,

l ∈ Z+. We shall expect that the lowest mode of excitation (n = 0, l = 1) will be the
first to condensate and will give the most stable solution after condensation[254, 257].

At this point, let us discuss one of the main results of this section. From
Eq. (6.48a) we observe that it has the following solution

U(ρ) = exp

(
−|B|ρ2

4

)
. (6.50)

This suggests that for any finite magnetic field, the holographic condensate will
be confined to a finite circular region. Moreover, if we increase the magnetic field this
region shrinks to its size and for a large value of the magnetic field this essentially
becomes a point at the origin with a nonzero condensate. This is precisely the
holographic realization of a superconducting droplet.

As a next step, we shall be interested in solving Eq. (6.48c) in order to determine a
relation between the critical parameters (µc and B) in this insulator/superconductor
phase transition. In order to do so, we shall further define F (t, r) = e−iωtR(r). With
this definition we may rewrite Eq. (6.48c) as,

R′′(u) +

(
f ′(u)

f(u)
− z + 2

u

)
R′(u) +

1

f(u)

(
µ2
c −B − m2

u2

)
R(u) = 0 (6.51)

where u =
1

r
, and we have put ω = 0 since we are interested in perturbations which

are marginally stable[254, 257]. Here ‘prime’ denotes derivative w.r.t. u.
We choose a trial function Λ(u) such that

R(u→ 0) ∼ 〈O4+〉u4+Λ(u) (6.52)

where 4± =
(z + 3)±

√
(z + 3)2 + 4m2

2
, m2

LB =
−(z + 3)2

4
[283], and Λ(0) =

1, Λ′(0) = 0. Note that, we have identified C2 in Eq. (6.20) as the expectation value
of the condensation operator, 〈O4+〉.

Substituting Eq. (6.52) into Eq. (6.51) we finally get,[
P(u)Λ′(u)

]′
+ Q(u)Λ′(u) + ΓR(u)Λ(u) = 0 (6.53)

where Γ =
(
µ2
c −B

)
, and

P =
(
1− uz+3

)
u24+−z−2 (6.54a)

Q =
[
4+ (4+ − 1)

(
1− uz+3

)
−m2 −4+

(
z + 2 + uz+3

) ]
u24+−z−4 (6.54b)

R = u24+−z−2. (6.54c)
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Interestingly, Eq. (6.53) is a standard Sturm-Liouville eigenvalue equation. Thus,
we may write the eigenvalue, Γ, by using the following formula[216]

Γ =

∫ 1

0
du
(
P(u)(Λ′(u))2 + Q(u)Λ2(u)

)
∫ 1

0
duP(u)Λ2(u)

= Γ(α, z,m2) (6.55)

where we have chosen Λ(u) = 1−αu4+ . Thus we may argue that, unlike the case of
usual holographic superconductors[257], the quantity Γ =

(
µ2
c −B

)
depends on the

dynamic critical exponent (z). Therefore we may conclude that the relation between
the parameters of the phase transition depend upon the anisotropic scaling. In the
Tables 6.1,6.2,6.3 below we have shown the non-trivial dependence of Γ on z.

m2 -3.0 -2.0 -1.0 1.0 2.0 3
Γ 2.41947 5.51156 7.59806 11.1513 12.7798 14.3487

Table 6.1: Variation of Γ for z = 1
2

(m2
LB = −3.0625)

m2 -4.5 -3.5 -2.5 -1.5 1.5 2.5 3.5 4.5
Γ 4.96028 7.50645 9.59179 11.479 16.5666 18.1496 19.6951 21.2097

Table 6.2: Variation of Γ for z = 3
2

(m2
LB = −5.06)

m2 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0 7.0
Γ 5.61026 10.5782 14.4483 17.9369 21.2117 24.3448 27.3750 30.3261

Table 6.3: Variation of Γ for z = 5
2

(m2
LB = −7.5625)

6.4 Conclusive remarks

In this chapter we have focused our attention to the study of a holographic model
of s-wave superconductor with Lifshitz scaling in the presence of external mag-
netic field by using the gauge/gravity duality. Working in the probe limit, we have
constructed vortex and droplet solutions for our holographic model by considering
a Lifshitz black hole and a Lifshitz soliton background, respectively. Unlike the
AdS/CFT holographic superconductors there is a non-trivial dynamic exponent in
the theory which is responsible for an anisotropy between the temporal and the spa-
tial dimensions of the space-time resulting certain noticeable changes of the proper-
ties of the superconductor[276]-[290]. Also, due to the non-relativistic nature of the
filed theory, the model is governed by the AdS/NRCFT correspondence[261]-[269].

The primary motivation of the present study is to verify the possibility of vortex
and droplet solutions, which are common to the usual holographic superconductors
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described by the AdS/CFT correspondence[245]-[249],[252],[257, 258], for this class
of holographic superconductors as well as to consider the effects of anisotropy on
these solutions. Based on purely analytic methods we have been able to construct
these solutions. Our analysis shows that, although, the anisotropy has no effects
on the vortex lattice solutions, it may have a non-trivial effect on the formation of
holographic condensates. Also, a close comparison between our results and those of
the Ginzburg-Landau theory reveals the fact that the upper critical magnetic field
(Bc2) is inversely proportional to the square of the superconducting coherence length
(ξ). This allows us to speculate the behavior of Bc2 with temperature although this
requires further investigations which is expected to be explored in the future. On
the other hand, based on the method of separation of variables, we have been able
to model a holographic droplet solution by working in a Lifshitz soliton background
and considering insulator/superconductor phase transition. Our analysis reveals
that a holographic droplet is indeed formed in the ρ− θ plane with a non-vanishing
condensate. Also, this droplet grows in size until it captures the entire plane when
the external magnetic field B → 0. Interestingly, it is observed that the anisotropy
does not affect the droplet solution. On top of that, we have determined a relation
between the critical parameters of the phase transition by using the Sturm-Liouville
method[216]. Interestingly, this relation is solely controlled by the dynamic exponent
(z) which in turn exhibits the effects of anisotropy on the condensate (cf. Eq. (6.55)).



Chapter 7

Summary and Outlook

In the previous five chapters, Chapter 2 through Chapter 6, we have presented in
details the works on which the present thesis is based on. Now, let us summarize
the entire analysis presented so far, and mention some of the future directions in
which we may further make some progress. At this stage we must mention that the
motivation of the present thesis was to investigate certain aspects of black holes in
the presence of non-linearity. In the major part of the thesis (Chapter 2–Chapter 5)
we considered non-linearity in the gauge and/or gravity sector of the usual Einstein-
Maxwell gravity in anti-de Sitter (AdS) space-time. On the other hand, in Chapter 6,
we also considered gravity theories that arise from non-linear (anisotropic) scaling
symmetry of space and time, namely, the Lifshitz gravity theories. While Chapter 2
and Chapter 3 contain thermodynamic aspects of several black holes subject to non-
linear corrections, the rest of the chapters deal with non-linear aspects of holographic
s-wave superconductors in the framework of gauge/gravity duality (relativistic and
non-relativistic) in which black holes play a pivotal role.

Let us summarize the results of Chapter 2. In this chapter we have applied
a fundamental scheme of ordinary, text-book thermodynamics in order to study
phase transition phenomena in charged AdS black holes with non-linear Born-Infeld
correction. This is the well known Ehrenfest’s scheme which plays an important role
in determining the nature of the phase transition in ordinary thermodynamics[124]-
[128]. In order to maintain compatibility with the laws of black hole mechanics[59]
we have suitably modified the thermodynamic variables in our study. Note that, we
have applied this scheme after carefully analyzing the temperature-entropy (T − S)
plot which is devoid of any discontinuity indicating the absence of any first order
transition. This observation encouraged us to check the validity of two Ehrenfest’s
equations at the critical points as is done in standard thermodynamic systems.
Based on our analysis, we have determined the order of the phase transition in the
Born-Infeld-AdS (BI-AdS) black hole which is found to be of second order. Here the
transition occurs from a lower mass black hole with negative specific heat to a higher
mass black hole with positive specific heat thereby attaining stability. In order to
check the validity of the Ehrenfest’s scheme in describing phase transitions in black
holes we have made an extensive study of the phase transition in the framework
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of the thermodynamic state space geometry. We have found that our approach is
compatible with the latter. This is reassured by the observation that the points
of divergence of the heat capacity are identical with those of the Ruppeiner scalar
curvature.

We have continued our study of black hole thermodynamics in Chapter 3. Here,
working in the same line of Chapter 2, we qualitatively describe the thermodynamic
phase structure and stability of a third order Lovelock-Born-Infeld-AdS (LBI-AdS)
black hole. Notably, this charged black hole solution is derived from the modified
Einstein-Maxwell theory in which both gauge and gravity sector have been modi-
fied to contain Born-Infeld and third order curvature corrections, respectively. We
have further extended our investigation by studying the critical behavior of the
mentioned black hole in the vicinity of the critical points. We also have computed
the static critical exponents, and checked the validity of the static scaling laws and
static scaling hypothesis explicitly. These critical exponents form a unique set of
values different from any known thermodynamic system. Comparing with earlier
observations[166]-[168] we found that all the charged AdS black holes belong to the
same universality class.

In the remaining three chapters of the thesis we have devoted ourselves in the
study of the effects of non-linear gauge as well as gravity corrections on some im-
portant aspects of holographic s-wave superconductors. These are phenomeno-
logical models of high-Tc superconductors and are studied in the framework of
gauge/gravity dualities. As a matter of fact, the gauge/gravity duality has ap-
peared to be a valuable tool to describe strongly interacting field theories to which
the high-Tc superconductors belong.

In Chapter 4, inspired by the fundamental role of the AdS/CFT duality to de-
scribe several properties of holographic superconductors[193], we have analytically
studied the effects of Born-Infeld corrections (to the gauge fields in the Abelian-Higgs
sector of the s -wave holographic superconductors) on the holographic superconduct-
ing phase transition. Due to the presence of non-linearity in the theory, it has been
observed that the analysis is extremely non-trivial, and a genuine mathematical
approach has been taken into consideration based on which we have been able to
determine the critical temperature (Tc) and the order parameter (〈O〉) of phase
transition successfully. Our analysis reveals that the higher derivative Born-Infeld
correction indeed makes the condensate formation harder as with increasing Born-
Infeld parameter (b) Tc and 〈O〉 decreases and increases, respectively. Moreover,
using the Sturm-Liouville eigenvalue method [216], we have been able to compute
Tc as a function of charge density (ρ). In addition, the critical exponent associated
with 〈O〉 has been found to be 1/2 which describes a second order superconducting
phase transition, and is the universal feature of a mean field theory.

In Chapter 5 we have explored the properties of s-wave holographic Gauss-
Bonnett superconductors in the presence of two Born-Infeld-like higher derivative
corrections to the gauge field, namely, the logarithmic and exponential corrections.
By considering this particular model we have been able to demonstrate the effects
of both gauge and gravity corrections on the superconducting phase transition. We
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observed that these corrections reduce the critical temperature for condensation and
subsequently the condensation formation becomes harder. On top of that, we also
study the effect of an external magnetic field on the condensate. Our analysis has
revealed that a Meissner-like effect indeed takes place which tries to reduce the
condensate away which is not favorable for condensate formation. Using the Match-
ing method [213], we have also computed analytically the order parameter and the
critical magnetic field for the condensate which are found to increase with increas-
ing non-linearity. Thus, the presence of these corrections make it difficult for the
superconducting phase transition to take place. Along with these, we have made
a comparative study of the effects of two different kinds of non-linear corrections
and found that the gauge corrections have more significant effects on the condensate
formation than the curvature correction. However, between two gauge corrections
the exponential correction exhibits stronger effects than the logarithmic correction.

In the penultimate Chapter 6 we have studied the magnetic response of holo-
graphic s-wave Lifshitz superconductors. These are in fact prototype holographic
models of strongly interacting non-relativistic field theories where Lorentz symme-
try is violated explicitly, although the scaling symmetry remains preserved. Here
we have investigated the effects of the dynamic critical exponent (z), a measure of
anisotropy between space and time which is inherent to the non-relativistic field
theory, on the vortex and droplet solutions that we have obtained analytically. Sur-
prisingly, we have observed that the anisotropy has no effect on these solutions which
helps us to conclude that these solutions are independent of the nature of the field
theory, i.e., whether the corresponding field theory is relativistic or non-relativistic,
the solutions are the same. However, we have found non-trivial dependence of the
critical parameters of this holographic phase transition on the dynamic exponent.

Finally, as we proceed towards the end of the thesis, we would like to discuss
several implications of the works presented here. We present these in the following
points:

(i) From our discussion on the thermodynamic aspects of black holes, the relation
between the laws of black hole mechanics and that of ordinary thermodynamics
becomes more transparent. It also helps us to reestablish the fact that black holes
can be described by mean field approximation. The compatibility of the Ehrenfest’s
scheme with the thermodynamic state space geometry approach and the study of
critical phenomena in black holes seems to support this argument. Further analysis
in this direction may put this connection in a firm basis. In this regard, the criti-
cal exponents associated with the correlation length and correlation function, that
we only speculated, may be determined using an alternative scheme based on the
Renormalization Group approach in which the thermodynamic state space geometry
may play an important role.

(ii) The surprising connection between gravity theories and strongly interacting
filed theories has played promising role to understand strongly coupled condensed
matter theories in ample details. In fact, based on this connection we have studied
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the holographic superconductors. However, this leaves a possible scope to further
apply this duality to describe several other interesting strongly interacting systems.
Along with this, there remains the challenging issue of finding proper string theory
embedding of these phenomenological models which may shed light on the proper-
ties of a class of strongly coupled field theories.

(iii) Owing to the non-relativistic nature of ordinary condensed matter systems,
it seems reasonable to impose substantial priority in the study of gauge/gravity du-
alities in the framework of non-relativistic field theories. Further support in this
regard may be provided since there are some serious experimental motivations be-
hind these studies as mentioned earlier.
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Ehrenfest’s scheme and thermodynamic geometry in Born-Infeld AdS black holes

Arindam Lala* and Dibakar Roychowdhury†

S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098, India
(Received 27 December 2011; published 9 October 2012)

In this paper, we analyze the phase transition phenomena in Born-Infeld anti-de Sitter (BI AdS) black

holes using Ehrenfest’s scheme of standard thermodynamics. The critical points are marked by the

divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically

check both Ehrenfest equations near the critical points. Our analysis reveals that this is indeed a second

order phase transition. Finally, we analyze the nature of the phase transition using the state space geometry

approach. This is found to be compatible with Ehrenfest’s scheme.
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I. INTRODUCTION

Thermodynamics of black holes in anti-de Sitter (AdS)

space has received renewed attention since the discovery of

the phase transition phenomena in the Schwarzschild AdS

background [1]. To date, several attempts have been made

in order to describe the phase transition phenomena in

black holes [2–11]. All these works are basically based

on the fact that at the critical point(s) of phase transition the

specific heat of the black hole diverges. Despite of all these

attempts, the issue regarding the classification of the nature

of the phase transition in black holes remains highly de-

batable and worthy of further investigations. At this stage it

is worthwhile to mention that in usual thermodynamics it is

a general practice to adopt Ehrenfest’s scheme [12] in order

to classify the phase transition phenomena [13–17]. This is

mainly due to two of its basic advantages, namely, (i) it is

simple and elegant, and (ii) it provides a unique way to

classify the nature of the phase transition in ordinary

thermodynamic systems. Even if a phase transition is not

truly a second order, we can determine the degree of its

deviation by defining a new parameter called the

Prigogine-Defay (PD) ratio ( ) [13,14,17]. Inspired by

all these facts, we propose a possible way to overcome

the long-standing problem regarding the classification of

phase transition in black holes by incorporating the idea of

Ehrenfest’s scheme from standard thermodynamics. Since

black holes in many respects behave as ordinary thermo-

dynamic objects, the extension of Ehrenfest’s scheme to

black hole thermodynamics therefore seems to be quite

natural. Such an attempt has been triggered very recently

[18–23].

Constructing gravity theories in the presence of various

higher derivative corrections to the usual Maxwell action

has been a popular topic of research for the past several

years [24–31]. Among these nonlinear theories of electro-

dynamics, it is the Born-Infeld theory that has earned

renewed attention for the past few decades due to its

several remarkable features. As a matter of fact, the

Einstein-Born-Infeld theory admits various static black

hole solutions that possess several significant qualitative

features which are absent in ordinary Einstein-Maxwell

gravity. These are given by the following: (i) Depending

on the value of the electric charge (Q) and the Born-Infeld
coupling parameter (b), it is observed that a meaningful

black hole solution exists only for bQ  0:5. On the other

hand, for bQ< 0:5 the corresponding extremal limit does

not exist. This eventually puts a restriction on the parame-

ter space of BI AdS black holes [32]. This is indeed an

interesting feature which is absent in the usual Einstein-

Maxwell theory. (ii) Furthermore, one can note that for

bQ ¼ 0:5, which corresponds to the critical BI AdS case,

there exists a new type of phase transition (HP3) which has

identical thermodynamical features as observed during the

phase transition phenomena in nonrotating BTZ black

holes [32,33]. This is also an interesting observation that

essentially leads to a remarkable thermodynamical analogy

which does not hold in the corresponding Reissener-

Nordström AdS (RN AdS) limit.

Motivated by all the above-mentioned features, in the

present work we therefore aim to carry out a further

investigation regarding the thermodynamic behavior of

BI AdS black holes [32,34–37] in the framework of stan-

dard thermodynamics. We adopt Ehrenfest’s scheme of

usual thermodynamics in order to resolve a number of

vexing issues regarding the phase transition phenomena

in BI AdS black holes. The critical points correspond to an

infinite discontinuity in the specific heat (C#), which in-

dicates the onset of a continuous higher order transition. At

this point it is worthwhile to mention that an attempt to

verify Ehrenfest’s equations for charged RN AdS black

holes was first initiated in Ref. [20]. There Ref. [20], based

on numerical techniques, the authors computed both of

Ehrenfest’s equations close to the critical point(s).

However, due the presence of infinite divergences in vari-

ous thermodynamic entities (like heat capacity, etc.), as

well as the lack of analytic techniques, at that time it was

not possible to check Ehrenfest’s equations exactly at the

critical point(s). In order to address the above-mentioned
*arindam.lala@bose.res.in, arindam.physics1@gmail.com
†dibakar@bose.res.in, dibakarphys@gmail.com
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issues, the present paper therefore aims to provide an

analytic scheme in order to check Ehrenfest’s equations

exactly at the critical point(s). Moreover, the present analy-

sis has been generalized taking the particular example of

BI AdS black holes which is basically the nonlinear gen-

eralization of RNAdS black holes. Our analysis shows that

it is indeed a second order phase transition.

Finally, we apply the widely explored state space ge-

ometry approach [38,39] to analyze the phase transition

phenomena in BI AdS black holes [19,20,40–51]. Our

analysis reveals that the scalar curvature (R) diverges ex-
actly at the critical points whereC# diverges. This signifies

the presence of a second order phase transition, thereby

vindicating our earlier analysis based on Ehrenfest’s

scheme. It is also reassuring to note that in the appropriate

limit (b! 1, Q � 0), one recovers corresponding results

for RN AdS black holes [20], where b is the Born-Infeld

parameter and Q is the charge of the black hole.

Before we proceed further, let us mention about the

organization of our paper. In Sec. II, we discuss thermo-

dynamics of the BI black holes in AdS space. Using

Ehrenfest’s scheme, the nature of the phase transition is

discussed in Sec. III. In Sec. IV, we analyze the phase

transition using the (thermodynamic) state space geometry

approach. Finally we draw our conclusion in Sec. V.

II. THERMODYNAMIC VARIABLES OF THE BI

ADS BLACK HOLES

In order to obtain a finite total energy for the field around

a pointlike charge, Born and Infeld proposed a nonlinear

electrodynamics [52] in 1934. The Born-Infeld black hole

solution with or without a cosmological constant is a non-

linear extension of the Reissner-Nordström black hole

solution. In this paper, we will be concerned with the

Born-Infeld solution in (3þ 1)-dimensional AdS space-

time (with a negative cosmological constant & ¼ %3=l2)
which is given by [32]

ds2 ¼ %fðrÞdt2 þ 1

fðrÞ dr
2 þ r2d(2; (1)

where we have taken the gravitational constant G ¼ 1.
Here the metric coefficient fðrÞ is given by

fðrÞ ¼ 1% 2M
r
þ r2 þ 2b

2r2

3

0

@1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2

b2r4

s 1

A

þ 4Q
2

3r2
F

&
1

4
;
1

2
;
5

4
;
%Q2
b2r4

'

; (2)

where F ð1
4
; 1
2
; 5
4
;%Q

2

b2r4
Þ is the hypergeometric function [53]

and b is the Born-Infeld parameter. In the limit b! 1,

Q � 0, one obtains the corresponding solution for the RN

AdS space-time. At this stage it is reassuring to note that

the rest of the analysis has been carried out keeping all

terms in the hypergeometric series F ð1
4
; 1
2
; 5
4
;%Q

2

b2r4
Þ.

The ADM mass of the black hole is defined by

fðrþÞ ¼ 0, which yields

Mðrþ; Q; bÞ ¼
rþ
2
þ r

3
þ
2
þ b

2r3þ
3

0

@1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2

b2r4þ

s !

þ 2Q
2

3rþ
F

&
1

4
;
1

2
;
5

4
;
%Q2
b2r4

'

; (3)

where rþ is the radius of the outer horizon.

Using (2), the Hawking temperature for the BI AdS

black holes may be obtained as1

T ¼ 1

41

&
dfðrÞ
dr

'

rþ

¼ 1

41

2

4
1

rþ
þ 3rþ þ 2b2rþ

0

@1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2

b2r4þ

s 1

A

3

5: (4)

From the first law of black hole thermodynamics we get

dM ¼ TdSþ#dQ. Using this we can obtain the entropy

of the black hole as

S ¼
Z rþ

0

1

T

&
@M

@r

'

Q
dr ¼ 1r2þ (5)

Substituting (5) in (4) we can rewrite the Hawking tem-

perature as [32]

T ¼ 1

41

2

4

ffiffiffiffi
1

S

r

þ 3
ffiffiffiffi

S

1

s

þ 2b
2
ffiffiffi

S
p
ffiffiffiffi
1
p

0

@1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ
212

b2S2

s 1

A

3

5:

(6)

We can see from Fig. 1 that there is a ‘‘hump’’ and a

‘‘dip’’ in the T % S graph. Another interesting thing about

the graph is that it is continuous in S. This rules out the
possibility of first order phase transition. In order to check

whether there is a possibility of higher order phase

1 2 3 4 5 6
S

0.20

0.25

0.30

0.35

TH

FIG. 1 (color online). Temperature (T) plot for BI AdS black

hole with respect to entropy (S) for fixed Q ¼ 0:13 and b ¼ 10.

1For details regarding the properties of hypergeometric func-
tion, see Ref. [53].
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transition, we compute the specific heat at constant poten-

tial (C#) [which is analog of the specific heat at constant

pressure (CP) in usual thermodynamics].

The electrostatic potential difference between the black

hole horizon and the infinity is defined by Ref. [35] as

# ¼ Q

rþ
F

&
1

4
;
1

2
;
5

4
;
%Q2
b2r4þ

'

: (7)

Using Ref. [5], we may further express # as

# ¼ Q
ffiffiffiffi
1
p
ffiffiffi

S
p F

&
1

4
;
1

2
;
5

4
;
%Q212
b2S2

'

: (8)

From the thermodynamical relation T ¼ TðS;QÞ, we find
&
@T

@S

'

#

¼
&
@T

@S

'

Q
%
&
@T

@Q

'

S

&
@#

@S

'

Q

&
@Q

@#

'

S
; (9)

where we have used the thermodynamic identity

&
@Q

@S

'

#

&
@S

@#

'

Q

&
@#

@Q

'

S
¼ %1: (10)

Finally, using Eqs. (6), (8), and (9), the heat capacity C#
may be expressed as

C# ¼ T
&
@S

@T

'

#

¼N ðQ; b; SÞ
DðQ; b; SÞ ; (11)

where

N ðQ;b;SÞ

¼%2S
8
<

:
1þ

0

@3%2b2
0

@%1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ
212

b2S2

s 1

A

1

AS

9
=

;

)
5

b2S2þð12Q2þb2S2ÞF
&
3

4
;1;
5

4
;
%Q212
b2S2

'6

(12)

and

DðQ;b;SÞ

¼b2S2
8
<

:
1þ

0

@%3þ2b2
0

@%1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ
212

b2S2

s 1

A

1

AS

9
=

;

þ2b2Sð%1QþbSÞð1QþbSÞF
&
1

4
;
1

2
;
5

4
;
%Q212
b2S2

'

þð1%3S%2b2SÞð12Q2þb2S2ÞF
&
3

4
;1;
5

4
;
%Q212
b2S2

'

:

(13)

Before going into the algebraic details, let us first plot

C# % S graphs (Figs. 2 and 3) and make a qualitative

analysis of the plots.

From these figures it is evident that the heat capacity

(C#) suffers discontinuities exactly at two points (S1 and
S2), which correspond to the critical points for the phase

transition phenomena in BI AdS black holes. A similar

conclusion also follows from the T % S plot (Fig. 1), where
the ‘‘hump’’ corresponds to S1 and the ‘‘dip’’ corresponds

to S2.
The graph of C#%S shows that there are three phases of

the black hole: phase I (0<S<S1), phase II (S1<S<S2),
and phase III (S > S2). Since the higher mass black hole

possess larger entropy/horizon radius, at S1 we therefore

encounter a phase transition from a smaller mass black

hole (phase I) to an intermediate (higher mass) black hole

(phase II). On the other hand, S2 corresponds to the critical
point for the phase transition from the intermediate black

hole (phase II) to a larger mass black hole (phase III).

Finally, from Figs. 2 and 3 we also note that the heat

capacity (C#) is positive for phase I and phase III, whereas
it is negative for phase II. Therefore, phase I and phase III

correspond to the thermodynamically stable phases

(C# > 0), whereas phase II stands for a thermodynami-

cally unstable phase (C# < 0).
From the above discussions it is evident that the phase

transitions we encounter in BI AdS black holes are indeed

S
1

Phase  I

Phase II

0.01 0.02 0.03 0.04 0.05 0.06 0.07

S

0.4

0.3

0.2

0.1

0.1

0.2

c

FIG. 2 (color online). Plot of specific heat (Plot of specific heat

(C#) against entropy (S) at the first critical point (S1) for fixed
Q ¼ 0:13 and b ¼ 10.

S2

Phase II

Phase  III

0.8 1.0 1.2 1.4

S

100

50

50

100

c

FIG. 3 (color online). Plot of specific heat (C#) against en-
tropy (S) at the second critical point (S2) for fixed Q ¼ 0:13 and
b ¼ 10.
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continuous higher order. In order to address it more spe-

cifically (i.e., whether it is a second order or any higher

order transition), we adopt a specific scheme known as

Ehrenfest’s scheme in standard thermodynamics.

III. STUDY OF PHASE TRANSITION USING

EHRENFEST’S SCHEME

Discontinuity in the heat capacity does not always imply

a second order transition, rather it suggests a continuous

higher order transition in general. Ehrenfest’s equations

play an important role in order to determine the nature

of such higher order transitions for various conventional

thermodynamical systems [13–17]. This scheme can be

applied in a simple and elegant way in standard thermody-

namic systems. The nature of the corresponding phase

transition can also be classified by applying this scheme.

Moreover, even if a phase transition is not a genuine

second order, we can determine the degree of its deviation

by calculating the PD ratio [13,14,17]. Inspired by all these

facts, we apply a similar technique to classify the phase

transition phenomena in BI AdS black holes and check the

validity of Ehrenfest’s scheme for black holes.

In conventional thermodynamics, the first and second

Ehrenfest equations [12] are given by
&
@P

@T

'

S
¼ 1

VT

CP2 % CP1
72 % 71

¼ +CP
VT+7

; (14)

&
@P

@T

'

V
¼ 72 % 71
82 % 81

¼ +7
+8

: (15)

In case of black hole thermodynamics, pressure (P) is

replaced by the negative of the electrostatic potential dif-

ference (%#), and volume (V) is replaced by charge (Q)
of the black hole.

Thus, for the black hole thermodynamics, the two

Ehrenfest equations become [18]

%
&
@#

@T

'

S
¼ 1

QT

C#2 % C#1
72 % 71

¼ +C#
QT+7

; (16)

%
&
@#

@T

'

Q
¼ 72 % 71
82 % 81

¼ +7
+8

; (17)

respectively. Here, the subscripts 1 and 2 denote two dis-

tinct phases of the system. In addition, 7 is the volume

expansion coefficient and 8 is the isothermal compressi-

bility of the system which are defined as

7 ¼ 1
Q

&
@Q

@T

'

#

; (18)

8 ¼ 1
Q

&
@Q

@#

'

T
: (19)

Using Refs. [6,8] and considering the thermodynamic

relation,

&
@Q

@T

'

#

¼ %
&
@#

@S

'

Q

&
@Q

@#

'

S

&
@S

@T

'

#

;

we can show that

7 ¼ %8b
21

3

2S
5

2

DðQ; b; SÞ ; (20)

where the denominator was identified earlier [Eq. (13)].

In order to calculate 8, we make use of the thermody-

namic identity,

&
@Q

@#

'

T

&
@#

@T

'

Q

&
@T

@Q

'

#

¼ %1: (21)

Using (10) we obtain from (21),

&
@Q

@#

'

T
¼ ð

@T
@S
ÞQð@Q@#ÞS
ð@T
@S
Þ#

: (22)

Using (6), (8), (9), and (22) we finally obtain

8 ¼ -ðQ; b; SÞ
DðQ; b; SÞ ; (23)

where

-ðQ; b; SÞ ¼ %2b
2S

3

2

Q1
1

2

2

4212Q2 % 1S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ
212

b2S2

s

þ
0

@2b2

0

@%1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ
212

b2S2

s 1

A

þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ
212

b2S2

s
'
3

5 (24)

and the denominator DðQ; b; SÞ is given by (13).

Note that the denominators of both 7 and 8 are indeed

identical with that of C#. This is manifested in the fact that

both 7 and 8 diverge exactly at the point(s) where C#
diverges (Figs. 4–7).

Being familiar with the two Ehrenfest equations and

knowing 7 and 8, we can now determine the order of the

phase transition. In order to do that we shall analytically

check the validity of the two Ehrenfest equations at the

points of discontinuity Si (i ¼ 1, 2). Furthermore, it should

be noted that at the points of divergence, we denote the

critical values for the temperature (T) and charge (Q) as Ti
and Qi, respectively.
Let us now calculate the lhs of the first Ehrenfest

Eq. (16), which may be written as

%
7&
@#

@T

'

S

8

S¼Si
¼ %

7&
@#

@Q

'

S

8

S¼Si

7&
@Q

@T

'

S

8

S¼Si
: (25)

Using (6) and (8) we further obtain
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%
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@#
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'

S
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S¼Si

¼ Si
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1þQ
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b2S2i

'

F

&
3

4
; 1;
5

4
;
%Q2i12
b2S2i

'8

: (26)

In order to calculate the rhs of the first Ehrenfest

Eq. (16), we adopt the following procedure. From (11) and

(18) we find

Qi7 ¼
7&
@Q

@T

'

#

8

S¼Si
¼
7&
@Q

@S

'

#

8

S¼Si

&
C#
Ti

'

: (27)

Therefore the rhs of (16) becomes

+C#
TiQi+7

¼
7&
@S

@Q

'

#

8

S¼Si
: (28)

Using (8) we can further write,

+C#
TiQi+7

¼ Si
Qi

7

1þ
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1þQ
2
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2

b2S2i

'

F

&
3

4
; 1;
5

4
;
%Q2i12
b2S2i

'8

:

(29)

From (26) and (29) it is evident that both the lhs and rhs of

the first Ehrenfest equation are indeed in good agreement at

the critical points Si. As a matter of fact, the divergence of

C# in the numerator is effectively canceled out by the

diverging nature of 7 appearing at the denominator, which

ultimately yields a finite value for the rhs of (16).

In order to calculate the lhs of the second Ehrenfest

equation, we use the thermodynamic relation,

T ¼ TðS;#Þ;
which leads to

&
@T

@#

'

Q
¼
&
@T

@S

'

#

&
@S

@#

'

Q
þ
&
@T

@#

'

S
: (30)

Since C# diverges at the critical points (Si), it is evident
from (11) that ½ð@T

@S
Þ#+S¼Si ¼ 0. Also, from (8) we find

that ð@S
@#
ÞQ has a finite value at the critical points (Si).

Thus, from (30) and using (16) we may write,

%
7&
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@T

'

Q

8

S¼Si
¼ %

7&
@#

@T

'

S

8

S¼Si
¼ +C#
TiQi+7

: (31)

From (19), at the critical points we can write,

8Qi ¼
7&
@Q

@#

'

T

8

S¼Si
: (32)

Using (21) and (18) this can be further written as

8Qi ¼ %
7&
@T

@#

'

Q

8

S¼Si
Qi7: (33)

Therefore, the rhs of (17) may be finally expressed as [22]
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'
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S¼Si
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'

F
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4
; 1;
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4
;
%Q2i12
b2S2i

'8

: (34)

This proves the validity of the second Ehrenfest equation at

the critical points Si. Finally, using (29) and (34), the PD

ratio [13] may be obtained as

 ¼ +C#+8

TiQið+7Þ2
¼ 1; (35)

which confirms the second order nature of the phase

transition.

IV. STUDY OF PHASE TRANSITION USING STATE

SPACE GEOMETRY

The validity of the two Ehrenfest equations near the

critical points indeed suggests a second order nature of

the phase transition. In order to analyze the phase transition

phenomena from a different perspective, we adopt the
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FIG. 4 (color online). Plot of volume expansion coefficient (7)
against entropy (S) at the first critical point (S1) for fixed Q ¼
0:13 and b ¼ 10.
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FIG. 5 (color online). Plot of volume expansion coefficient (7)
against entropy (S) at the second critical point (S2) for fixedQ ¼
0:13 and b ¼ 10.
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thermodynamic state space geometry approach [38,39],

which has received renewed attention for the past two

decades in the context of black hole thermodynamics

[19,20,40–51]. This method provides an elegant way to

analyze a second order phase transition near the critical

point.

In the state space geometry approach, one aims to cal-

culate the scalar curvature (R) [49] which suffers a dis-

continuity at the critical point for the second order phase

transition.

In order to calculate the curvature scalar (R), we need to
determine the Ruppeiner metric coefficients which may be

defined as [38,39]

gRij ¼ %
@2SðxiÞ
@xi@xj

; (36)

where xi ¼ xiðM;QÞ, i ¼ 1, 2 are the extensive variables

of the system. From the computational point of view it is

convenient to calculate the Weinhold metric coefficients

[54]

gWij ¼
@2MðxiÞ
@xi@xj

(37)

[where xi ¼ xiðS;QÞ, i ¼ 1, 2] that are conformally con-

nected to that of the Ruppeiner geometry through the

following map [40,55]:

dS2R ¼
dS2W
T
: (38)

In order to calculate gRij we choose x
1 ¼ S and x2 ¼ Q.

Finally, using (3) the Ruppeiner metric coefficients may be

found as

gRSS ¼
1

2S

7

%1þ 3S
1
þ 2b2S

1

&

1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q212

b2S2

q '

þ 41Q2

S
% 213Q4

b2S3

8

7

1þ 3S
1
þ 2b2S

1

&

1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q212

b2S2

q '8

(39)

gRSQ ¼

:
%21Q
S
þ 13Q3

b2S3

;

7

1þ 3S
1
þ 2b2S

1

&

1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q212

b2S2

q '8 (40)

and

gRQQ ¼
ð41% 613Q2

5b2S2
Þ

7

1þ 3S
1
þ 2b2S

1

&

1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q212

b2S2

q '8 : (41)

Using these metric coefficients, the curvature scalar may

be computed as

R ¼ }ðS;QÞ
<ðS;QÞ : (42)

The numerator }ðS;QÞ is too cumbersome, which prevents

us from presenting its detailed expression for the present

work. However, the denominator <ðS;QÞ may be ex-

pressed as

<¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ1
2Q2

b2S2

s 2

4%1þ
0

@%3þ 2b2
0

@%1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ1
2Q2

b2S2

s 1

A

1

AS

3

5
:

12Q2þ b2S2
;
0

@%16Q6þ 12b214Q4S2% 3b213Q2S3

þ b212Q2
0

@9% 2b2
0

@7þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ1
2Q2

b2S2

s 1

A

1

AS4þ 10b41S5þ 10b4
0

@%3þ 2b2
0

@%1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ1
2Q2

b2S2

s 1

A

1

AS6

1

A

3

: (43)
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FIG. 6 (color online). Plot of isothermal compressibility (8)
against entropy (S) at the first critical point (S1) for fixed Q ¼
0:13 and b ¼ 10.
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FIG. 7 (color online). Plot of isothermal compressibility (8)
against entropy (S) at the second critical point (S2) for fixedQ ¼
0:13 and b ¼ 10.
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Before we conclude this section, let us note few inter-

esting points at this stage. First of all, from Figs. 8 and 9 we

observe that the scalar curvature (R) diverges exactly at the
points where the specific heat (C#) diverges (also see

Figs. 2 and 3). This is an expected result, since according

to Ruppeiner any divergence in R implies a corresponding

divergence in the heat capacity C# (which is thermody-

namic analog of CP) that essentially leads to a change in

stability [49]. On the other hand, no divergence in R could

be observed at the Davis critical point [56], which is

marked by the divergence in CQ (which is the thermody-

namic analog of CV). Similar features have also been

observed earlier [19,20].

V. CONCLUSIONS

In this paper, based on a standard thermodynamic ap-

proach, we systematically analyze the phase transition

phenomena in BI AdS black holes. Our results are valid

for all orders in the BI parameter (b). The continuous

nature of the T % S plot essentially rules out the possibility
of any first order transition. On the other hand, the dis-

continuity of the heat capacity (C#) indicates the onset of a
continuous higher order transition. In order to address this

issue further, we provide a detailed analysis of the phase

transition phenomena using Ehrenfest’s scheme of stan-

dard thermodynamics [12] which uniquely determines the

second order nature of the phase transition. At this stage it

is reassuring to note that the first application of Ehrenfest’s

scheme in order to determine the nature of phase transition

in charged RN AdS black holes had been commenced in

Ref. [20]. There, the analysis had been carried out numeri-

cally in order to check the validity of the Ehrenfest equa-

tions close to the critical point(s). Frankly speaking, the

analysis presented in Ref. [20] was actually in an under-

developed stage. This is mainly due to the fact that at that

time no such analytic scheme was available. As a result, at

that stage of analysis it was not possible to check the

validity of the Ehrenfest equations exactly at the critical

point(s) due to the occurrence of infinite divergences of

various thermodynamic entities at the (phase) transition

point(s).

In order to address the above-mentioned issue, in the

present paper we provide an analytical scheme to check the

validity of the Ehrenfest equations exactly at the critical

point(s). Furthermore, we carry out the entire analysis

taking the particular example of BI AdS black holes which

is basically the nonlinear generalization of RN AdS black

holes. Therefore, our results are quite general and hence

they are valid for a wider class of charged black holes in the

usual Einstein gravity.

Also, we analyze the phase transition phenomena using

the state space geometry approach. Our analysis shows that

the scalar curvature (R) suffers discontinuities exactly at

the (critical) points where the heat capacity (C#) diverges.
This further indicates the second order nature of the phase

transition. Therefore, from our analysis it is clear that both

Ehrenfest’s scheme and the state space geometry approach

essentially lead to an identical conclusion. This also estab-

lishes their compatibility while studying phase transitions

in black holes.

Finally, we remark that the curvature scalar, which

behaves in a very suggestive way for conventional systems,

displays similar properties for black holes. Specifically, a

diverging curvature that signals the occurrence of a second

order phase transition in usual systems retains this charac-

teristic for black holes. Our analysis reveals a direct con-

nection between Ehrenfest’s scheme and thermodynamic

state space geometry.
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In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-
Born-Infeld-AdS black hole as an example. Pe thermodynamics of the black hole have been studied which reveals the onset
of a higher-order phase transition in the black hole in the canonical ensemble (Xxed charge ensemble) framework. We have
analytically derived the critical exponents associated with these thermodynamic quantities. We Xnd that our results Xt well with
the thermodynamic scaling laws and consistent with the mean Xeld theory approximation. Pe suggestive values of the other two
critical exponents associated with the correlation function and correlation length on the critical surface have been derived.

1. Introduction

Constructing gravity theories in higher dimensions (i.e.,
greater than four) has been an interesting topic of research
for the past several decades. One of the reasons for this is
that these theories provide a framework for unifying gravity
with other interactions. Since string theory is an important
candidate for such uniXed theory, it is necessary to consider
higher-dimensional space-time for its consistency. In fact, the
study of string theory in higher dimensions is one of themost
important and challenging sectors in high energy physics.
String theory requires the inclusion of gravity in order to
describe some of its fundamental properties. Other theories
like brane theory are theory of supergravity are also studied
in higher dimensions. All these abovementioned facts under-
scored the necessity for considering gravity theories in higher
dimensions [1]. Pe e^ect of string theory on gravity may
be understood by considering a low energy e^ective action
that describes the classical gravity [2]. Pis e^ective action
must include combinations of the higher curvature terms and
found to be ghost-free [3]. In an attempt to obtain the most
general tensor that satisXes the properties of Einstein’s tensor
in higher dimensions, Lovelock proposed an e^ective action
that contains higher curvature terms [4]. Pe Xeld equations
derived from this action consist of only second derivatives
of the metric and hence are free of ghosts [5]. In fact, these

theories are the most general second-order gravity theories
in higher dimensions.
Among various higher dimensional theories of gravity,

it is the seven-dimensional gravity that has earned repeated
interests over the past two decades because of the interesting
physics associated with them. For example, addition of
certain topological terms in the usual Einstein-Hilbert action
produces new type of gravity in seven-dimensions. For a
particular choice of the coupling constants it is observed that
these terms exist in seven dimensional gauged supergravity
[6]. Apart from these aspects of the supergravity theories in 7
dimensions, there are several other important features associ-
ated with gravity theories in these particular dimensions. For
example, there exists an octonionic instanton solution to the
seven-dimensional Yang-Mills theory having an extension to
a solitonic solution in low energy heterotic string theory [7].
Emergence of �-duality in seven dimensions involves some
nontrivial phenomenawhich are interpreted in -theory [8].
Also, study of black holes in 7 dimensions is important in the
context of the AdS/CFT correspondence [9–11].
Pere has been much progress in the study of various

properties of the black holes both in four as well as in
higher dimensions (greater than four) over the past few
decades. Black holes in higher dimensions possess interesting
properties which may be absent in four dimensions [12–16]
(for an excellent review on black holes in higher dimensions
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see [17]). Among several intriguing properties of black holes
we will be mainly concerned with the thermodynamics of
these objects. Pis motivation primarily arises from the
fact that the study of black hole thermodynamics in higher
dimensions may provide us with information about the
nature of quantum gravity.Pe limits of validity of the laws of
black hole mechanics [18] may address some interpretations
in this regard. Various quantum e^ects can be imposed in
order to check the validity of these laws. For example, if we
want to study the e^ect of backreaction of quantum Xeld
energy on the laws on black hole mechanics, we are required
to consider higher curvature interactions [19]. From this
point of view it is very much natural to study the e^ect of
higher curvature terms on the thermodynamic properties
of black holes. In fact, the higher-dimensional Lovelock
theory sets a nice platform to study this e^ect. Moreover,
the higher curvature gravity theories in higher dimensions
are free from the complications that arise from the higher
derivative theories. All these facts motivate us to study the
higher curvature gravity theories in higher dimensions.
Pe study of thermodynamic properties of black holes

in anti-de Sitter (AdS) space-time has got renewed attention
due to the discovery of phase transition in Schwarzschild-
AdS black holes [20]. Since then a wide variety of researches
have been commenced in order to study the phase tran-
sition in black holes [15, 16, 21–33]. Nowadays, the study
of thermodynamics of black holes in AdS space-time is
very much important in the context of AdS/CFT dual-
ity. Pe thermodynamics of AdS black holes may provide
important information about the underlying phase structure
and thermodynamic properties of CFTs [34]. Pe study
of thermodynamic phenomena in black holes requires an
analogy between the variables in ordinary thermodynamics
and those in black hole mechanics. Recently, Banerjee et
al. have developed a method [28, 29], based on Ehrenfest’s
scheme [35] of standard thermodynamics, to study the phase
transition phenomena in black holes. In this approach one
can actually determine the order of phase transition once the
relevant thermodynamic variables are identiXed for the black
holes. Pis method has been successfully applied in the four
dimensional black holes in AdS space-time [29–32] as well as
in higher dimensional AdS black holes [15].
Pe behavior of the thermodynamic variables near the

critical points can be studied by means of a set of indices
known as static critical exponents [36, 37]. Pese exponents
are to a large extent universal and independent of the spatial
dimensionality of the system and obey thermodynamic scal-
ing laws [36, 37]. Pe critical phenomena have been studied
extensively in familiar physical systems like the Ising model
(two and three dimensions), magnetic systems, elementary
particles, hydrodynamic systems, and so forth. An attempt to
study the critical phenomena in black holes was commenced
in the last twenty years [38–52]. Despite all these attempts, a
systematic study of critical phenomena in black holes was still
lacking. Pis problem has been circumvented very recently
[16, 53]. In these works the critical phenomena have been
studied in (3 + 1) as well as higher dimensional AdS black
holes. Also, the critical exponents of the black holes have been
determined by explicit analytic calculations.

All the researches mentioned above were conXned to
Einstein gravity. It would then be interesting to study gravity
theories in which action involves higher curvature terms.
Among the higher curvature black holes, Gauss-Bonnet and
Lovelock black holes will be suitable candidates to study. Pe
thermodynamic properties and phase transitions have been
studied in the Gauss-Bonnet AdS (GB-AdS) black holes [22,
54–58]. Also, the critical phenomena in the GB-AdS black
holes were studied [59]. On the other hand, Lovelock gravity
coupled to the Maxwell Xeld was investigated in [60, 61].
Pe thermodynamic properties of the third order Lovelock-
Born-Infeld-AdS (LBI-AdS) black holes in seven space-time
dimensionswere studied in [60, 62, 63]. But the study of phase
transition and critical phenomena have not yet been done in
these black holes.
In this paper we have studied the critical phenomena in

the third-order LBI-AdS black holes in seven dimensions.We
have also given a qualitative discussion about the possibility
of higher order phase transition in this type of black holes.We
have determined the static critical exponents for these black
holes and showed that these exponents obey the static scaling
laws. We have also checked the static scaling hypothesis
and calculated the scaling parameters. We observe that these
critical exponents take the mean Xeld values. From our study
of the critical phenomena we may infer that the third order
LBI-AdS black holes yield results consistent with the mean
Xeld theory approximation. Despite having some distinct
features in the higher curvature gravity theories, for example,
the usual area law valid in Einstein gravity does not hold in
these gravity theories, the critical exponents are found to be
identical with those in the usual Einstein gravity. Pis result
shows that the AdS black holes, studied so far, belong to the
same universality class. We have also determined the critical
exponents associated with the correlation function and cor-
relation length. However, the values of these exponents are
more suggestive than deXnitive. As a Xnal remark, we have
given a qualitative argument for the determination of these
last two exponents.
Pe organization of the paper is as follows. In Section 2

we discuss the thermodynamical variables of the seven-
dimensional third order LBI-AdS black holes. In Section 3 we
analyze the phase transition and stability of these black holes.
Pe critical exponents, scaling laws, and scaling hypothesis
are discussed in Section 4. Finally, we have drawn our
conclusions in Section 5.

2. Thermodynamic Variables of Higher
Curvature Charged AdS Black Holes

Pe e^ective action in the Lovelock gravity in (! + 1) dimen-
sions can be written as (here we have taken the gravitational
constant " = 1) [4]

I = 116# ∫%�+1&√−,[(�+1)/2]∑
 =0
. L , (1)

where . is an arbitrary constant andL is the Euler density
of a 20-dimensional manifold. In (! + 1) dimensions all
terms for which 0 > [(! + 1)/2] are equal to zero, the
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term 0 = (! + 1)/2 is a topological term, and terms for which0 < [(! + 1)/2] contribute to the Xeld equations. Since we
are studying third-order Lovelock gravity in the presence
of Born-Infeld nonlinear electrodynamics [64], the e^ective
action of (1) may be written as

I = 116# ∫%�+1&√−, (.0L0 + .1L1+ .2L2 + .3L3 + 5 (7))= 116# ∫%�+1&√−, (−2Λ +R+ .2L2 + .3L3 + 5 (7)) ,
(2)

where Λ is the cosmological constant given by −!(! − 1)/2:2,: being the AdS length, .2 and .3 are the second- and third-
order Lovelock coelcients, L1 = R is the usual Einstein-

Hilbert Lagrangian,L2 = ;!]"#;!]"# − 4;!];!] +R2 is the
Gauss-Bonnet Lagrangian,

L3 = 2;!]$%;$%&';&'
!] + 8;!]

$&;$%
]';&'

!%+ 24;!]$%;$%]&;&
! + 3R;!]$%;$%!]

+ 24;!]$%;$!;%] + 16;!];
]$;$

! − 12R;!];!] +R3

(3)

is the third-order Lovelock Lagrangian, and 5(7) is the Born-
Infeld Lagrangian given by

5 (7) = 4B2(1 − √1 + 722B2) . (4)

In (4), 7!] = G!H]
− G

]
H!, 72 = 7!]7!], and B is the

Born-Infeld parameter. In the limit B → ∞ we recover the
standard Maxwell form 5(7) = −72.
Pe solution of the third order Lovelock-Born-Infeld anti

de-Sitter black hole (LBI-AdS) in (! + 1)-dimensions can be
written as [63]

%K2 = −L (M) %N2 + 1L (M)%M2 + M2%Ω2
*,�−1, (5)

where

%Ω2
*,�−1 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{

%T2
1 + �−1∑

 =2

 −1∏
.=1
sin2T.%T2

 W = 1
%T2

1 + sinh2T1%T2
2

+sinh2T1�−1∑
 =3

 −1∏
.=2
sin2T.%T2

 W = −1
�−1∑
 =1
%X2

 W = 0
(6)

and W determines the structure of the black hole horizon (W =+1 (spherical), −1 (hyperbolic), 0 (planar)). At this point of
discussion it must be mentioned that the Lagrangian of (2) is
the most general Lagrangian in seven space-time dimensions

that produce the second-order Xeld equations [60]. Pus, we
will restrict ourselves in the seven space-time dimensions.
Pe equation of motion for the electromagnetic Xeld

for this (6 + 1)-dimensional space-time can be obtained by
varying the action (2) with respect to the gauge XeldH!. Pis
results in the following [63]:

G! ( √−,7!]√1 + 72/2B2) = 0, (7)

which has a solution [63]

H! = −√58 ( bM4 )H (d) e0
!. (8)

HereH(d) is the abbreviation of the hypergeometric function
[65] given by

H (d) =H(12 , 25 , 75 , −d) . (9)

In (8), d = 10b2/B2M10 and b is a constant of integration which
is related to the charge (g) of the black hole. Pe charge (g)
of the black hole may be obtained by calculating the mux of
the electric Xeld at inXnity [60, 63, 66]. Perefore,

g = −∫
B

%�−1h√i!!j] ( 7!]√1 + 72/2B2)
= V�−14# √ (! − 1) (! − 2)2 b
= √10#2b4 (for ! = 6) ,

(10)

where !! and j] are the time-like and space-like unit normal
vectors to the boundaryB, respectively, and i is the determi-
nant of the induced metric i . onB having coordinates h . It
is to be noted that in deriving (10) we have only considered

the 705 component of 7!].
Pe quantityV�−1 is the volume of the (!− 1) sphere and

may be written as

V�−1 = 2#�/2Γ (!/2) . (11)

Pe metric function L(M) of (5) may be written as [63]
L (M) = W + M2.6 (1 − m(M)1/3) , (12)

where

m (M) = 1 + 3.6oM6 − 2.6B25 [1 − √1 + d − Λ2B2 + 5d4 H (d)] .
(13)

Here we have considered the special case .3 = 2.2
2 =.62/72 [60, 63].

Since, in our study of the critical phenomena in the third-
order LBI-AdS black holes, the thermodynamic quantities
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like “quasilocal energy” ( ), Hawking temperature (r),
entropy (s), and so forth will play important roles, we will
now focus mainly on the derivations of these quantities.
Pe “quasilocal energy”  of asymptotically AdS black

holes may be obtained by using the counterterm method
which is indeed inspired by the AdS/CFT correspondence
[67–69]. Pis is a well-known technique which removes the
divergences in the action and conserved quantities of the
associated space-time. Pese divergences appear when one
tries to add surface terms to the action in order to make it
well deXned.Pe countertermmethod was applied earlier for
the computation of the conserved quantities associated with
space-time, having Xnite boundaries, de-Sitter (dS) space-
time and asymptotically mat space-time in the framework of
Einstein gravity [70–76]. On the other hand, this method
was applied in Lovelock gravity to compute the associated
conserved quantities [60, 61, 63, 77, 78]. However, for the
asymptotically AdS solutions of the third order Lovelock
black holes the action may be written as [61, 63, 78]

A = I + 18# ∫8M %�&√uuuuvuuuu (I1
9 + .2I

2
9 + .3I

3
9)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

boundary terms

+ 18# ∫8M %�&√uuuuvuuuu (! − 15 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
counter term

, (14)

where v is the determinant of the induced metric v:9 on the
time-like boundary GM of the space-time manifoldM. Pe
quantity 5 is a scale length factor given by

5 = 15√.6 (1 − {)5 + 9.6 − {2 − 4{ , (15)

where

{ = (1 − 3.6)1/3. (16)

Pe boundary terms in (14) are chosen such that the action
possesses well-deXned variational principle, whereas, the
counterterm makes the action and the associated conserved
quantities Xnite.
Pe boundary terms appearing in (14) may be identiXed

as [61, 63, 78]

I
1
9 = } (17)

I
2
9 = 2 (� − 2"1

:9}:9) (18)

I
3
9 = 3 (� − 2"2

:9}:9 − 12;:9�:9 + 2R�
− 4};:9;<}:;}9< − 8};:9;<}:;}9

>}><) , (19)

where } is the trace of the extrinsic curvature }:9. In (18)"1
:9 is the Einstein tensor for v:9 in !-dimensions, and � is the
trace of the following tensor:

�:9 = 13 (2}}:;};
9 + };<};<}:9 − 2}:;};<}<9 − }2}:9) .

(20)

In (19) "2
:9 is the second order Lovelock tensor for v:9 in !-

dimensions which is given by

"2
:9 = 2 (;:;<>;;<>

9 − 2;:?9;;?;

− 2;:;;;
9 +R;:9) −L2 (v) v:9, (21)

whereas � is the trace of
�:9 = 15 ([}4 − 6}2};<};< + 8}};<}<

>}>;

− 6};<}<>}>?}?; + 3(};<};<)2]}:9

− (4}3 − 12}}><}>< + 8}<>}>
?}?<)}:;};

9

− 24}}:;};<}<>}>
9+ (12}2 − 12}>?}>f)}:;};<}<9

+ 24}:;};<}<>}>?}?9) .

(22)

Using the method prescribed in [79], we obtain the
divergence-free energy-momentum tensor as [61, 63, 78],

r:9 = 18# [ (}:9 − }v:9) + 2.2 (3�:9 − �v:9)
+ 3.3 (5�:9 − �v:9) + ! − 15 v:9] . (23)

Pe Xrst three terms of (23) result from the variation
of the boundary terms of (14) with respect to the induced

metric v:9, whereas the last term is obtained by considering
the variation of the counterterm of (14) with respect to v:9.
For any space-like surfaceB in GMwhich has the metrici . we can write the boundary metric in the following form

[61, 63, 78, 79]:

v:9%&:%&9 = −�2%N2 + i . (%h + � %N) (%h. + �.%N) ,
(24)

where h are coordinates on B and � and � are the lapse
function and the shiq vector, respectively. For any Killing
vector Xeld � on the the space-like boundary B in GM, we
maywrite the conserved quantities associatedwith the energy

momentum tensor (r:9) as [61, 63, 78, 79]

Q@ = ∫
B

%�−1h√i!:�9r:9, (25)

where i is the determinant of the metric i . onB, !: is the

time-like unit normal to B, and �9(= G/GN) is the time-like
Killing vector Xeld. For the metric (5) we can write !: =(1/√L(M), 0, 0, 0, . . .), and �: = (1, 0, 0, . . .), }:9 = −vA

: ∇Aj9,
where j: = (0, L(M), 0, . . .) is the space-like unit normal to the
boundary.
With these values of !: and �: the only nonvanishing

component of r:9 becomes r00. Hence, Q@ corresponds to
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the “quasilocal energy” of the black hole. Pus, from (25)
the expression for the “quasilocal energy” of the black hole
may be written as

 = ∫
B

%�−1h√i!0�0r00. (26)

Using (12) and (23), (26) can be computed as

 |�=6 = V�−116# (! − 1)o|�=6

= 5#216 o,
(27)

where the constant o is expressed as the real root of the
equation

L (M = M+) = 0. (28)

Using (11) and substitutingo from (28) we Xnally obtain
from (27)

 = 5#216 [W3.623 + WM4+ + W2.6M2+
+2B2M6+15 (1−√1 + d+− Λ2B2 + 20g2B2#4M10

+
H (d+))] .

(29)

Pe electrostatic potential di^erence between the black hole
horizon and the inXnity may be deXned as [63]

Φ = √ (! − 1)2 (! − 2) bM�−2
+

H (d+) = g#2M4+H (d+) (for ! = 6) ,
(30)

where

d+ = 16g2B2#4M10
+
. (31)

It is to be noted that in obtaining (31) we have used (10).
Pe Hawking temperature for the third order LBI-AdS

black hole is obtained by analytic continuation of the metric.
If we set N → 0j, we obtain the Euclidean section of (12)
which requires to be regular at the horizon (M+). Pus we
must identify j ∼ j + �, where � (= 2#/�, � being the
surface gravity of the black hole) is the inverse of theHawking
temperature. Perefore the Hawking temperature may be
written as�−1

= r = 14#(GL (M)GM )5+

= 10WM4+ + 5W.6M2+ + 2B2M6+ (1 − √1 + 16g2/B2#4M10
+ )− ΛM6+10#M+(M2+ + W.6)2 .

(32)

It is interesting to note that in the limit .6 → 0, the
corresponding expression for the Hawking temperature of
the Born-Infeld AdS (BI-AdS) black hole can be recovered as
[16]

rBI-AdS = 14# [[
4WM+ + 4B

2M+5 (1 − √1 + g2B2M4+) − 2ΛM+5 ]] .
(33)

Pe entropy of the black hole may be calculated from
the Xrst law of black hole mechanics [80]. In fact, it has
been found that the thermodynamic quantities (e.g., entropy,
temperature, “quasilocal energy,” etc.) of the LBI-AdS black
holes satisfy the Xrst law of black hole mechanics [60, 61, 63,
66, 77, 81]:

% = r%s + Φ%g. (34)

Using (34) the entropy of the black hole may be obtained
as

s = ∫5+

0

1r(G GM+ )B
%M+

= #34 (M5+ + 10W.6M3+3 + 5W2.62M+) , (35)

wherewe have used (29) and (32). At this point it is interesting
to note that identical expression for the entropy was obtained
earlier using somewhat di^erent approach [82–86]. In this
approach, in an arbitrary spatial dimension !, the expression
for the Wald entropy for higher curvature black holes is
written as

s = 14 [(�−2)/2]∑
.=1
�.. ∫

B

%�−1h√|i|L.−1 (i)
= 14 ∫B %�−1h√|i|
× (1 + 2.2R̃ + 3.3 (;̃:9;<;̃:9;< − 4;̃:9;̃:9 +R2))
= V�−14 [M4+ + 2 (! − 1)(! − 3) W.6M2+ + (! − 1)(! − 5)W2.62] M�−5

+ ,
(36)

whereL.(i) is the �th order Lovelock Lagrangian of i . and
the tilde denotes the corresponding quantities for the induced
metric i .. If we put ! = 6 in (36) we obtain the expression
of (35) (the entropy of black holes both in the usual Einstein
gravity and in higher curvature gravity can also be obtained
by using the approach of [87–89], respectively.Pe expression
for the entropy of the third order Lovelock black hole given
by (35) is the same as that of [89]).Pus, wemay infer that the
entropy of the black hole obtained from the Xrst law of black
hole mechanics is indeed the Wald entropy.
From (35) and (36), we Xnd that the entropy is not

proportional to the one-fourth of the horizon area as in the
case of the black holes in the Einstein gravity. However, if we
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take the limit .6 → 0, we can recover the usual area law of
black hole entropy in the BI-AdS black hole [16] as

s = #34 M5+. (37)

In our study of critical phenomena, we will be mainly
concerned with the spherically symmetric space-time. In this
regard wewill always take the value of W to be +1. SubstitutingW = 1 in (32) and (35) we Xnally obtain the expressions for
the “quasilocal energy,” the Hawking temperature, and the
entropy of the third order LBI-AdS black hole as

 = 5#216 [.623 + M4+ + .6M2+ + 2B2M6+15
× (1 − √1 + d+ − Λ2B2 + 20g2B2#4M10

+
H (d+))] ,

(38)

r = 10M4+ + 5.6M2+ + 2B2M6+ (1 − √1 + 16g2/B2#4M10
+ ) − ΛM6+10#M+(M2+ + .6)2 ,

(39)

s = #34 (M5+ + 10.6M3+3 + 5.62M+) . (40)

3. Phase Transition and Stability of
the Third-Order LBI-AdS Black Hole

In this sectionwe aim to discuss the nature of phase transition
and the stability of the third order LBI-AdS black hole. A
powerful method, based on Ehrenfest’s scheme of ordinary
thermodynamics, was introduced by the authors of [28]
in order to determine the nature of phase transition in
black holes. Using this analytic method, phase transition
phenomena in various AdS black holes were explored [29–
32]. Also, phase transition in higher dimensional AdS black
holes has been discussed in [15].
In this paper we have qualitatively discussed the phase

transition phenomena in the third order LBI-AdS black hole
following the arguments presented in the above mentioned
works. At this point it must be stressed that the method pre-
sented in [28] has not yet been implemented for the present
black hole. However, we will not present any quantitative
discussion in this regard.
From the r − M+ plot (Figures 1 and 2) it is evident that

there is no discontinuity in the temperature of the black hole.
Pis rules out the possibility of Xrst order phase transition
[15, 29–32].
In order to see whether there is any higher order phase

transition, we calculate the speciXc heat of the black hole.
In the canonical ensemble framework the speciXc heat at
constant charge (this is analogous to the speciXc heat at
constant volume (�D) in the ordinary thermodynamics) (�B)
can be calculated as [16, 53]

�B = r( GsGr)B
= r (Gs/GM+)B(Gr/GM+)B = N (M+, g)

D (M+, g) , (41)
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Figure 1: Plot of the Hawking temperature (r) against horizon
radius (M+), for .6 = 0.5, g = 0.50, and B = 10.
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Figure 2: Plot of the Hawking temperature (r) against horizon
radius (M+), for .6 = 1.0, g = 0.50, and B = 10.
where

N (M+, g) = 54#7M5+(M2+ + .6)3√1 + 16g2B2#4M10
+

× [[10M2+ + 5.6

+ 2B2M4+(1 − √1 + 16g2B2#4M10
+
) − ΛM4+]] ,

(42)

D (M+, g)= 128g2 + [15#4M6+.6 + 5#4M4+.62 − Λ#4M10
+

−5#4M8+ (2 + .6Λ) ]√1 + 16g2B2#4M10
+

− (2B2#4M10
+ + 10B2#4M8+.6)(1 − √1 + 16g2B2#4M10

+
) .
(43)

In the derivation of (41) we have used (39) and (40).
In Figures 3, 4, 5, 6, 7, 8, 9, and 10, we have plotted �B

against the horizon radius M+ (here we have zoomed in the
plots near the two critical points M (0 = 1, 2) separately).
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Figure 3: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 0.5, g = 15, and B = 0.60 at the critical point M1.
Pe numerical values of the roots of (41) are given in Tables
1(a) and 1(b). For convenience we have written the real roots
of (41) only. From our analysis it is observed that the speciXc
heat always possesses simple poles. Moreover, there are two
real positive roots (M (0 = 1, 2)) of the denominator of �B
for di^erent values of the parameters B,g, and .6. Also, from
the �B − M+ plots it is observed that the speciXc heat su^ers
discontinuity at the critical points M (0 = 1, 2). Pis property
of �B allows us to conclude that at the critical points there is
indeed a continuous higher order phase transition [16, 53].
Let us now see whether there is any bound in the values

of the parameters B, g, and .6. At this point it must be
stressed that a bound in the parameter values (B, g) for
the Born-Infeld-AdS black holes in (3 + 1)-dimensions was
found earlier [53, 57]. Moreover, this bound is removed if we
consider space-time dimensions greater than four [16]. Pus,
it will be very much interesting to check whether the third-
order LBI-AdS black holes possess similar features. In order
to do so, we will consider the extremal third order LBI-AdS
black hole. In this case both L(M) and %L/%M vanish at the
degenerate horizon M> [16, 53, 57]. Pe above two conditions
for extremality result in the following equation:

10M4> + 5.6M2> + 2B2M6> (1 − √1 + 16g2B2#4M10
>
) − ΛM6> = 0.

(44)

In Tables 2(a) and 2(b)we give the numerical solutions of
(44) for di^erent choices of the values of the parameters B andg for Xxed values of .6. From this analysis we observe that for
arbitrary choices of the parameters B andg we always obtain
atleast one real positive root of (44). Pis implies that there
exists a smooth extremal limit for arbitrary B andg and there
is no bound on the parameter space for a particular value of.6.Pus, the result obtained here (regarding the bound in the
parameter values) is in good agreement with that obtained in
[16].
We will now analyse the thermodynamic stability of the

third order LBI-AdS black hole. Pis is generally done by
studying the behaviour of �B at the critical points [16, 30, 32,
53, 57]. Pe �B − M+ plots show that there are indeed three
phases of the black hole. Pese phases can be classiXed as,
Phase I (0 < M+ < M1), Phase II (M1 < M+ < M2), and Phase III,

Phase II
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Figure 4: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 0.5, g = 15, and B = 0.60 at the critical point M2.
(M+ > M2). Since the higher mass black hole possesses larger
entropy/horizon radius, there is a phase transition at M1 from
smaller mass black hole (Phase I) to intermediate (higher
mass) black hole (Phase II). Pe critical point M2 corresponds
to a phase transition from an intermediate (higher mass)
black hole (Phase II) to a larger mass black hole (Phase
III). Moreover, from the �B − M+ plots we note that the
speciXc heat �B is positive for Phase I and Phase III whereas
it is negative for Phase II. Perefore Phase I and Phase III
correspond to thermodynamically stable phases (�B > 0),
whereas Phase II corresponds to thermodynamically unstable
phase (�B < 0).
We can further extend our stability analysis by consider-

ing the free energy of the third order LBI-AdS black hole.Pe
free energy plays an important role in the theory of phase
transition and critical phenomena. We may deXne the free
energy of the third order LBI-AdS black hole as

F (M+, g) =  (M+, g) − rs. (45)

Using (38), (39), and (40) we can write (45) as

F

= 5#216 [[
.623 + M4+ + .6M2+ + 2B2M6+15
× (1 − √1 + 16g2B2#4M10

+
− Λ2B2

+ 20g2B2#4M10
+
H(12 , 25 , 75 , − 16g2B2#4M10

+
))]]

− #2 (M5+ + (10.6M3+/3) + 5.62M+)40M+(M2+ + .6)2
× [[10M4++5.6M2++2B2M6+(1−√1+ 16g2B2#4M10

+
) − ΛM6+]] .

(46)

In Figures 11, 12, 13, and 14 we have given the plots of the
free energy (F) of the black hole with the radius of the outer
horizon M+. Pe free energy (F) has a minima F = FA at
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Table 1: (a) Real roots (41) for .6 = 0.5 and : = 10. (b) Real roots of
(41) for .6 = 1.0 and : = 10.

(a)g B M1 M2 M3 M4
15 0.6 1.59399 7.96087 −7.96087 −1.59399
8 0.2 1.18048 7.96088 −7.96088 −1.18048
5 0.5 1.25190 7.96088 −7.96088 −1.25190
0.8 20 1.01695 7.96088 −7.96088 −1.01695
0.3 15 0.975037 7.96088 −7.96088 −0.975037
0.5 10 0.989576 7.96088 −7.96088 −0.989576
0.5 1 0.989049 7.96088 −7.96088 −0.989049
0.5 0.5 0.987609 7.96088 −7.96088 −0.987609
0.05 0.05 0.965701 7.96088 −7.96088 −0.965701

(b)g B M1 M2 M3 M4
15 0.6 1.76824 7.74534 −7.74534 −1.76824
8 0.2 1.53178 7.74535 −7.74535 −1.53178
5 0.5 1.51668 7.74535 −7.74535 −1.51668
0.8 20 1.40553 7.74535 −7.74535 −1.40553
0.3 15 1.40071 7.74535 −7.74535 −1.40071
0.5 10 1.40214 7.74535 −7.74535 −1.40214
0.5 1 1.40214 7.74535 −7.74535 −1.40214
0.5 0.5 1.40213 7.74535 −7.74535 −1.40213
0.05 0.05 1.39992 7.74535 −7.74535 −1.39992
M+ = MA. Pis point of minimum-free energy is exactly the
same as the Xrst critical point M+ = M1, where the black hole
shiqs from a stable to an unstable phase. On the other hand
F has a maxima F = F0 at M+ = M0. Pe point at which
F reaches its maximum value is identical with the second
critical point M+ = M2, where the black hole changes from
unstable to stable phase.We can further divide theF−M+ plot
into three distinct regions. In the Xrst region M61 < M+ < MA the
negative-free energy decreases until it reaches the minimum
value (FA) at M+ = MA. Pis region corresponds to the stable
phase (Phase I: �B > 0) of the black hole. Pe free energy
changes its slope at M+ = MA and continues to increase in
the second region MA < M+ < M0 approaching towards the
maximum value (F0) at M+ = M0. Pis region corresponds to
Phase II of the �B − M+ plot, where the black hole becomes
unstable (�B < 0). Pe free energy changes its slope once
again at M+ = M0 and decreases to zero at M+ = M62 and Xnally
becomes negative for M+ > M62. Pis region of theF − M+ plot
corresponds to the Phase III of the �B − M+ plot where the
black hole Xnally becomes stable (�B > 0).
4. Critical Exponents and Scaling Hypothesis

In thermodynamics, the theory of phase transition plays a
crucial role to understand the behavior of a thermodynamic
system. Pe behavior of thermodynamic quantities near the
critical point(s) of phase transition gives a considerable
amount of information about the system. Pe behavior of a
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Figure 5: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 0.5, g = 0.50, and B = 10 at the critical point M1.
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Figure 6: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 0.5, g = 0.50, and B = 10 at the critical point M2.
thermodynamic system near the critical point(s) is usually
studied by means of a set of indices known as the critical
exponents [36, 37]. Pese are generally denoted by a set of
Greek letters: ., �, v, e, X, �, d, and ]. Pe critical exponents
describe the nature of singularities in various measurable
thermodynamic quantities near the critical point(s).
In this section we aim to determine the Xrst six static

critical exponents (. , �, v, e , X, and �). For this purpose we
shall follow themethod discussed in [16, 33, 53].We shall then
discuss the static scaling laws and static scaling hypothesis.
We shall determine the other two critical exponents (] and d)
from two additional scaling laws.

Critical Exponent .. In order to determine the critical
exponent . which is associated with the singularity of �B
near the critical points M (0 = 1, 2), we choose a point in the
inXnitesimal neighborhood of M as

M+ = M (1 + Δ) , 0 = 1, 2, (47)

where |Δ| ≪ 1. Let us denote the temperature at the critical
point by r(M ) and deXne the quantity

¢ = r (M+) − r (M )r (M ) (48)

such that |¢| ≪ 1.
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Table 2: (a) Roots of (44) for .6 = 0.5 and : = 10. (b) Roots of (44) for .6 = 1.0 and : = 10.
(a)g B M2>1 M2>2 M2>3,>4 M2>5

15 0.6 −66.4157 — — +0.632734

8 0.2 −66.4157 — — +0.121590

5 0.5 −66.4157 — — +0.200244

0.8 20 −66.4157 −0.408088 −0.05881 ± 00.304681 +0.268514

0.3 15 −66.4157 −0.304225 −0.0517567 ± 00.175488 +0.145685

0.5 10 −66.4157 −0.349764 −0.0593449 ± 00.240144 +0.192519

0.5 1 −66.4157 — — +0.0221585

0.5 0.5 −66.4157 — — +0.00625335

0.05 0.05 −66.4157 — — +6.57019 × 10−7

(b)g B M2>1 M2>2 M2>3,>4 M2>5
15 0.6 −66.1628 — — +0.50473

8 0.2 −66.1628 — — +0.0546589

5 0.5 −66.1628 — — +0.110054

0.8 20 −66.1629 −0.563564 −0.0913395 ± 00.266887 +0.236186

0.3 15 −66.1629 −0.514815 −0.0584676 ± 00.14609 +0.116834

0.5 10 −66.1629 −0.531635 −0.0760937 ± 00.210702 +0.155024

0.5 1 −66.1629 −0.542417 — +0.00640486

0.5 0.5 −66.1629 — — +0.00163189

0.05 0.05 −66.1629 — — +1.64256 × 10−7
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Figure 7: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 1.0, g = 5, and B = 0.5 at the critical point M1.
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Figure 8: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 1.0, g = 5, and B = 0.5 at the critical point M2.
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Figure 9: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 1.0, g = 0.05, and B = 0.05 at the critical point M1.
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Figure 10: Plot of speciXc heat (�B) against horizon radius (M+), for.6 = 1.0, g = 0.05, and B = 0.05 at the critical point M2.
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Figure 11: Plot of free energy (F) against horizon radius (M+), for.6 = 0.50, g = 0.50, and B = 10.
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Figure 12: Plot of free energy (F) against horizon radius (M+), for.6 = 0.50, g = 0.50, and B = 10.
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Figure 13: Plot of free energy (F) against horizon radius (M+), for.6 = 1.0, g = 5, and B = 0.5.
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Figure 14: Plot of free energy (F) against horizon radius (M+), for.6 = 1.0, g = 5, and B = 0.5.

We now Taylor expand r(M+) in the neighborhood of M 
keeping the charge constant (g = g;), which yields

r (M+) = r (M ) + [( GrGM+)B=B 

]
5+=5!

(M+ − M )
+ 12[(G2rGM2+ )B=B 

]
5+=5!

(M+ − M )2 + ⋅ ⋅ ⋅ .
(49)

Since the divergence of �B results from the vanishing of(Gr/GM+)B at the critical point M (41), we may write (49) as
r (M+) = r (M ) + 12[(G2rGM2+ )B=B 

]
5+=5!

(M+ − M )2, (50)

where we have neglected the higher order terms in (49).

Using (47) and (48) we can Xnally write (50) as

Δ = ¢1/2Γ1/2
 
, (51)

where

Γ = M2 2r (M )[(G
2rGM2+ )B=B 

]
5+=5!

. (52)

Pe detailed expression of Γ is very much cumbersome
and we will not write it for the present work.

If we examine ther−M+ plots (Figures 1 and 2), we observe
that near the critical point M+ = M1 (which corresponds to the
“hump”) r(M+) < r(M1) so that ¢ < 0, and on the contrary,
near the critical point M+ = M2 (which corresponds to the
“dip”) r(M+) > r(M2) implying ¢ > 0.
Substituting (47) into (41) we can write the singular part

of �B as

�B = N
6 (M , g;)Δ ⋅D6 (M , g;) , (53)

whereN6(M , g;) is the value of the numerator of �B (42) at
the critical point M+ = M and critical charge g = g;. Pe
expression forD6(M , g;) is given by

D
6 (M , g;) = D6

1 (M , g;) +D6
2 (M , g;)

+D6
3 (M , g;) , (54)

where

D
6
1 (M , g;)
= 10#4M4 √1 + 16g2

;B2#4M10
 × [(2.62 + 2B2M6 + 8B2M4 .6)− (ΛM6 + 9.6M2 + 4 (2 + Λ.6) M4 )]
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D
6
2 (M , g;) = −80g2

;B2M2 [15.
6M2 + 5.62M4 − ΛM2 − 5 (2 + Λ.6)]

D
6
3 (M , g;)
= −20B2#4M8 [M2 (1 + 8g2

;B2#4M10
 
)

+4.6 (1 + 10g2
;B2#4M10
 
)] .

(55)

It is to be noted that while expanding the denominator of�B, we have retained the terms which are linear in Δ, and all
other higher order terms of Δ have been neglected.
Using (53) we may summarize the critical behavior of �B

near the critical points (M1 and M2) as follows:

�B ∼ {{{{{{{{{
[ A (−¢)1/2]

5!=51
¢ < 0

[ A (+¢)1/2]
5!=52

¢ > 0, (56)

where

A = Γ1/2
 N

6 (M , g;)
D6 (M , g;) . (57)

We can combine the right-hand side of (56) into a single
expression, which describes the singular nature of �B near
the critical point M , yielding

�B = A |¢|1/2

= A r1/2
 uuuur − r 
uuuu1/2 ,

(58)

where we have used (48). Here r and r are the abbreviations
of r(M+) and r(M ), respectively.
We can now compare (58) with the standard form

�B ∼ uuuur − r 
uuuu−G

(59)

which gives . = 1/2.
Critical Exponent �. Pe critical exponent � is related to the
electric potential at inXnity (Φ) by the relation

Φ(M+) − Φ (M ) ∼ uuuur − r 
uuuuH, (60)

where the charge (g) is kept constant.

Near the critical point M+ = M the Taylor expansion ofΦ(M+) yields
Φ(M+) = Φ (M ) + [( GΦGM+)B=B 

]
5+=5!

(M+ − M ) + ⋅ ⋅ ⋅ (61)

Neglecting the higher order terms and using (30) and (51)
we may rewrite (61) asΦ(M+) − Φ (M )

= −( 4g;#2M4 Γ1/2
 r1/2

 √1 + 16g2
;/B2#4M10

 

)uuuur − r 
uuuu1/2.
(62)

Comparing (62) with (60) we Xnally obtain � = 1/2.
Critical Exponent v. We will now determine the critical
exponent v which is associated with the singularity of the
inverse of the isothermal compressibility (�−1

I ) at constant
charge g = g; near the critical point M+ = M as�−1

I ∼ uuuur − r 
uuuu−". (63)

In order to calculate �−1
I we use the standard thermody-

namic deXnition

�−1
I = g(GΦGg)I= −g(GΦGr)B

(GrGg)Φ
, (64)

where in the last line of (64) we have used the identity

(GΦGr)B
(GrGg)Φ

(GgGΦ)I
= −1. (65)

Using (30) and (39) we can write (64) as

�−1
I = Ω (M+, g)

D (M+, g) , (66)

where D(M+, g) is the denominator identically equal to (43)
(the denominator of�B), and the expression forΩ(M+, g)may
be written asΩ(M+, g)= g5#2M4+× [128g2 + (15#4M6+. + 5#4M4+.2

−Λ#4M10
+ − 5#4M8+ (2 + .Λ))

× √1 + 16g2B2#4M10
+
− (2B2#4M10

+ + 10B2#4M8+.)
× (1 − √1 + 16g2B2#4M10

+
)

×H(12 , 25 , 75 , − 16g2B2#4M10
+
)] − Σ (M+, g) ,

(67)
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where

Σ (M+, g) = 4g5 [[2B2#2M4+ (M2+ + 5.)√1 + 16g2B2#4M10
++ #2 (−15M2+. − 5.2 + M6+ (Λ − 2B2)

+ 5M4+ (2 + Λ. − 2B2.))]] .
(68)

From (66) we observe that �−1
I possesses simple poles.

Moreover �−1
I and �B exhibit common singularities.

We are now interested in the behavior of �−1
I near the

critical point M+ = M . In order to do so we substitute (47) into
(66). Pe resulting equation for the singular part of �−1

I may
be written as

�−1
I = Ω6 (M , g;)Δ ⋅D6 (M , g;) . (69)

In (69), Ω6(M , g;) is the value of the numerator of �−1
I

(67) at the critical point M+ = M and critical charge g = g;,
whereasD6(M , g;) was identiXed earlier (54).
Substituting (51) in (69) we may express the singular

nature of �−1
I near the critical points (M1 and M2) as
�−1

I ≃
{{{{{{{{{{{
[ B (−¢)1/2]

5!=51
¢ < 0

[ B (+¢)1/2]
5!=52

¢ > 0, (70)

where

B = Γ1/2
 Ω6 (M , g;)
D6 (M , g;) . (71)

Combining the right-hand side of (70) into a single
expression as before, we can express the singular behavior of�−1

I near the critical point M as
�−1

I = B |¢|1/2

= B r1/2
 uuuur − r 
uuuu1/2 . (72)

Comparing (72) with (63) we Xnd v = 1/2.
Critical Exponent e. Let us now calculate the critical expo-
nent ewhich is associated with the electrostatic potential (Φ)
for the Xxed value r = r of temperature. Pe relation can be
written as

Φ(M+) − Φ (M ) ∼ uuuug − g 
uuuu1/#. (73)

In this relationg is the value of charge (g) at the critical pointM . In order to obtain e we Xrst Taylor expand g(M+) around
the critical point M+ = M . Pis yields
g (M+) = g (M ) + [( GgGM+)I=I!

]
5+=5!

(M+ − M )
+ 12[(G2gGM2+ )I=I!

]
5+=5!

(M+ − M )2 + ⋅ ⋅ ⋅ . (74)

Neglecting the higher order terms we can write (74) as

g (M+) − g (M ) = 12[(G2gGM2+ )I
]

5+=5!
(M+ − M )2. (75)

Here we have used the standard thermodynamic identity

[( GgGM+)I
]

5+=5!
[(GM+Gr )B

]
5+=5!
(GrGg)5+=5!

= −1 (76)

and considered the fact that at the critical point M+ = M ,(Gr/GM+)B vanishes.
Let us now deXne a quantity

Υ = g (M+) − g g 
= g − g g 

, (77)

where |Υ| ≪ 1. Here we denote g(M+) and g(M ) by g and g ,
respectively.
Using (47) and (77) we obtain from (75)

Δ = Υ1/2Ψ1/2
 
[2g M2 ]

1/2, (78)

where

Ψ = [(G2gGM2+ )I
]

5+=5!
. (79)

Pe expression for Ψ is very much cumbersome, and we
shall not write it here.
We shall now consider the functional relation

Φ = Φ (M+, g) (80)

from which we may write

[( GΦGM+)I
]

5+=5!
= [( GΦGM+)B

]
5+=5!+ [( GgGM+)I
]

5+=5!
(GΦGg)5+=5!

. (81)

Using (76) we can rewrite (81) as

[( GΦGM+)I=I!

]
5+=5!

= [( GΦGM+)B=B 

]
5+=5!

. (82)
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Now the Taylor expansion of Φ at constant temperature
around M+ = M yields

Φ(M+) = Φ (M ) + [( GΦGM+)I=I!

]
5+=5!

(M+ − M ) , (83)

where we have neglected all the higher order terms.
Finally using (78), (82), and (30) we may write (83) as

Φ(M+) − Φ (M )
= ( −4g;#2M5 √1 + 16g2

;/B2#4M10
 

)( 2Ψ 
)1/2uuuug − g 

uuuu1/2.
(84)

Comparing (73) and (84) we Xnd that e = 2.
Critical Exponent X.Pe critical exponentX is associatedwith
the divergence of the speciXc heat at constant charge (�B) at
the critical point M+ = M as,

�B ∼ uuuug − g 
uuuu−K. (85)

Now from (53) and (58) we note that

�B ∼ 1Δ (86)

which may be written as

�B ∼ 1uuuug − g 
uuuu1/2 , (87)

where we have used (78).
Comparison of (87) with (85) yields X = 1/2.

Critical Exponent �. In order to calculate the critical expo-
nent �, which is related to the entropy of the third order LBI-
AdS black hole, we Taylor expand the entropy (s(M+)) around
the critical point M+ = M . Pis gives

s (M+) = s (M ) + [( GsGM+)]5+=5!
(M+ − M ) + ⋅ ⋅ ⋅ . (88)

If we neglect all the higher order terms and use (40), (47),
and (78), we can write (88) as

s (M+) − s (M ) = 5#34 (M4 + 2.6M2 + .62) ( 2Ψ 
)1/2uuuug − g 

uuuu1/2.
(89)

Comparing (89) with the standard relation

s (M+) − s (M ) ∼ uuuug − g;
uuuuL, (90)

we Xnally obtain � = 1/2.
In Table 3 we write all the six critical exponents obtained

from our analysis in a tabular form. For comparison we also

give the critical exponents associated with some well-known
systems.

Dermodynamic Scaling Laws and Static Scaling Hypothesis.
Pe discussion of critical phenomena is far from complete
unless we make a comment on the thermodynamic scaling
laws. In standard thermodynamic systems the critical expo-
nents are found to satisfy some relations among themselves.
Pese relations are called thermodynamic scaling laws [36,
37]. Pese scaling relations are given as

. + 2� + v = 2. + � (e + 1) = 2
X + 2� − 1e = 1� (e − 1) = v(2 − .) (e − 1) = v (1 + e)1 + (2 − .) (e� − 1) = (1 − .) e.

(91)

From the values of the critical exponents obtained in
our analysis it is interesting to observe that all these scaling
relations are indeed satisXed for the third order LBI-AdS
black holes.
We shall now explore the static scaling hypothesis [36–38]

for the third order LBI-AdS black hole. Since we are working
in the canonical ensemble framework, the thermodynamic
potential of interest is the Helmholtz free energy, F(r, g) = − rs, where the symbols have their usual meaning.
Now the static scaling hypothesis states that, close to the

critical point the singular part of the Helmholtz free energy is a
generalized homogeneous function of its variables.
Pis asserts that there exist two parameters ®M and ®Υ such

that

F ({:"¢, {:ΥΥ) = {F (¢, Υ) (92)

for any arbitrary number {.
In an attempt to Xnd the values of the scaling parameters®M and ®Υ, we shall now Taylor expand the Helmhotz free

energy F(r, g) near the critical point M+ = M . Pis may be
written as

F (r, g)
= F (r, g) |5+=5! + [(GFGr )B

]
5+=5!

× (r − r ) + 12[(G2
FGr2 )

B
]

5+=5!

× (r − r )2
+ [(GFGg )I

]
5+=5!
(g − g ) + 12[(G2

FGg2 )
I
]

5+=5!× (g − g )2+[( G2
FGrGg)]5+=5!

(r − r ) (g − g )+ ⋅ ⋅ ⋅ .
(93)
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Table 3

Critical
exponents

3rd-order
LBI-AdS black

hole
CrBM3∗ 2D

Ising model∗

van der
Waal
system‡. 0.5 0.05 0 0� 0.5 0.368 0.125 0.5v 0.5 1.215 1.7 1.0e 2.0 4.28 15 3.0� 0.5 0.60 — —X 0.5 0.03 — —

∗Pese are the nonmean Xeld values.
‡Pese values are taken from [46].

From (93) we can identify the second derivatives ofF as

(G2
FGr2 )

B
= −�Br ,

(G2
FGg2 )

I
= �−1

Ig .
(94)

Note that since both �B and �−1
I diverge at the critical

point, these derivatives can be justiXed as the singular parts
of the free energyF.
Since in the theory of critical phenomena we are mainly

interested in the singular part of the relevant thermodynamic
quantities, we sort out the singular part ofF(r, g) from (93),
which may be written as

FP = 12[(G2
FGr2 )

B
]

5+=5!

(r − r )2
+ 12[(G2

FGg2 )
I
]

5+=5!
(g − g )2

= −�B2r 
(r − r )2 + �−1

I2g 
(g − g )2,

(95)

where the subscript “K” denotes the singular part of the free
energyF.
Using (51), (58), (72), and (78) we may write the singular

part of the Helmhotz free energy (F) as

FP = i ¢3/2 + j Υ3/2, (96)

where

i = −A r 2 , j = B Ψ1/2
 g1/2

 M 23/2Γ1/2
 

. (97)

From (92) and (96) we observe that

®M = ®Υ = 23 . (98)

Pis is an interesting result in the sense that, in general,®M and ®Υ are di^erent for a generalized homogeneous
function (GHF), but in this particular model of the black

hole, these two scaling parameters are indeed identical. With
this result we can argue that the Helmhotz free energy is
usual homogeneous function for the third order LBI-AdS
black hole.Moreover, we can determine the critical exponents
(., �, v, e, X, �) oncewe calculate the scaling parameters.Pis
is because these critical exponents are related to the scaling
parameters as [36, 37]

. = 2 − 1®M , � = 1 − ®Υ®M ,
v = 2®Υ − 1®M , e = ®Υ1®Υ ,X = 2®M − 1®Υ , � = 1 − ®M®Υ .

(99)

Pere are two other critical exponents associated with the
behavior of the correlation function and correlation length of
the system near the critical surface. We shall denote these
two critical exponents as d and ], respectively. If "( ⃗M+) and� are the correlation function and the correlation length,
respectively, we can relate d and ] with them as

" ( ⃗M+) ∼ M2−�−Q
+ ,� ∼ uuuur − r 
uuuu−]. (100)

For the time beingwe shall assume that the two additional
scaling relations [36]

v = ] (2 − d) , (2 − .) = ]! (101)

hold for the third order LBI-AdS black hole. Using these two
relations (101) and the values of . and v, the exponents ] andd are found to be 1/4 and 0, respectively.
Although we have calculated d and ] assuming the

additional scaling relations to be valid, it is not proven yet
that these scaling relations are indeed valid for the black
holes. One may adapt di^erent techniques to calculate d
and ], but till now no considerable amount of progress has
been made in this direction. One may compute these two
exponents directly from the correlation of scalarmodes in the
theory of gravitation [48], but the present theories of critical
phenomena in black holes are far from complete.

5. Conclusions

In this paper we have analyzed the critical phenomena
in higher curvature charged black holes in a canonical
framework. For this purpose we have considered the third
order Lovelock-Born-Infeld-AdS (LBI-AdS) black holes in a
spherically symmetric space-time. We systematically derived
the thermodynamic quantities for such black holes. We are
able to show that some of the thermodynamic quantities

(�B, �−1
I ) diverge at the critical points. From the nature of the

plots we argue that there is a higher order phase transition
in this black hole. Although the analytical estimation of the
critical points is not possible due to the complexity of the
relevant equations, we are able to determine the critical points
numerically.However, all the critical exponents are calculated
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analytically near the critical points. Unlike the AdS black
holes in the Einstein gravity, one interesting property of the
higher curvature black holes is that the usual area law of
entropy does not hold for these black holes. One might then
expect that the critical exponents may di^er from those for
the AdS black holes in the Einstein gravity. But we Xnd that all
the critical exponents in the third order LBI-AdS black hole
are indeed identical with those obtained in Einstein gravity
[16, 53]. From this observation we may conclude that these
black holes belong to the same universality class. Moreover,
the critical exponents take the mean Xeld values. It is to
be noted that these black holes have distinct set of critical
exponents which does not match the critical exponents of
any other known thermodynamic systems. Another point
that must be stressed is that the static critical exponents
are independent of the spatial dimensionality of the AdS
space-time. Pis suggests the mean Xeld behavior in black
holes as thermodynamic systems and allows us to study the
phase transition phenomena in the black holes. We have also
discussed the static scaling laws and static scaling hypothesis.
Pe static critical exponents are found to satisfy the static
scaling laws near the critical points. We have checked the
consistency of the static scaling hypothesis. Apart from this
we note that the two scaling parameters have identical values.
Pis allows us to conclude that the Helmhotz free energy is
indeed a homogeneous function for this type of black hole.
We have determined the two other critical exponents ] andd associated with the correlation length (�) and correlation
function ("( ⃗M+)) near the critical surface assuming the
validity of the additional scaling laws.Pe values of these two
exponents are found to be 1/4 and 0, respectively, in the six
spatial dimensions. Although the other six critical exponents
are independent of the spatial dimension of the system, these
two exponents are very much dimension dependent.
In our analysis we have been able to resolve a number

of vexing issues concerning the critical phenomena in third
order LBI-AdS black holes. But there still remains some
unsolved problems that encourage one to make further
investigations into the system. First of all, we have made a
qualitative argument about the nature of the phase transition
in this black hole. One needs to go through detailed algebraic
analysis in order to determine the true order of the phase
transition [28–32]. Secondly, we have calculated the values of
the exponents ] and d assuming that the additional scaling
relations hold for this black hole. But there is no evidence
whether these two laws hold for the black hole [16, 53]. Pese
scaling relations may or may not hold for the black hole.
Pe dimension dependence of these two exponents (] andd) makes the issue highly nontrivial in higher dimensions.
A further attempt to determine d and ] may be based on
Ruppeiner’s prescription [90], where it is assumed that the
absolute value of the thermodynamic scalar curvature (|R|)
is proportional to the correlation volume ��:

|R| ∼ ��, (102)

where ! is the spatial dimension of the black hole. Now if we
can calculateRusing the standardmethod [32, 91, 92], we can
easily determine � from (102). Evaluating � around the critical

point M+ = M as before, we can determine ] directly. It is then
straightforward to calculate d by using (84). Pis alternative
approach, based on Ruppeiner’s prescription, to determine ]
and d needs highmathematical rigor, and also the complexity
in the determination of the scalar curvature (R) in higher
dimensions makes the issue even more challenging.
Apart from the above mentioned issues, it would also

be highly nontrivial if we aim to investigate the AdS/CFT
duality as an alternative approach tomake further insight into
the theory of critical phenomena in these black holes. Pe
renormalization group method may be another alternative
way to describe the critical phenomena in these black holes.
Finally, it would be nice if we can apply the behaviour of

the third-order LBI-AdS black holes for understanding sev-
eral issues related to the brane-world cosmology. Following
the prescription of [93], we can embed a brane in the bulk
third-order LBI-AdS black hole and study the corresponding
Friedmann-Robertson-Walker (FRW) cosmology. As a pos-
sible extension of our analysis, the study of thermodynamic
properties of such a brane will be interesting. Performing
analysis in the same line as is done in this paper we may
compute the critical exponents of the brane which can be
helpful to understand thermodynamical phases of the brane.
On top of that, we can then compare critical behaviour
of the black hole with that of the brane. Further, we may
check the correspondence between the entropy of this black
hole and that of the dual conformal Xeld theory (CFT)
that lives on the brane (Cardy-Verlinde formula) through
the CFT/FRW relation. We may further look for possible
modiXcations of the Cardy-Verlinde formula whichmay shed
light on several questionable issues regarding our universe.
Also, the contribution(s) due to the nonlinear Born-Infeld
Xeld, appearing in our model, on the FRW equations can be
studied. Pere is also a scope to study the e^ects of the third
order Lovelock coelcient (.6) on the induced brane matter
from the bulk LBI-AdS black hole. In relation to this, the
investigation of the validity of the dominant energy condition
(DEC) and/or weak energy condition (WEC)may turn out to
be an important issue.
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In this paper, considering the probe limit, we analytically study the onset of holographic s-wave

condensate in the planar Schwarzschild-AdS background. Inspired by various low-energy features of

string theory, in the present work we replace the conventional Maxwell action with a (nonlinear) Born-

Infeld action which essentially corresponds to the higher-derivative corrections of the gauge fields. Based

on a variational method which is commonly known as the Sturm-Liouville eigenvalue problem and

considering a nontrivial asymptotic solution for the scalar field, we compute the critical temperature for

the s-wave condensation. The results thus obtained analytically agree well with the numerical findings

[J. Jing and S. Chen, Phys. Lett. B 686, 68 (2010)]. As a next step, we extend our perturbative technique to

compute the order parameter for the condensation. Interestingly, our analytic results are found to be of the

same order as the numerical values obtained earlier.
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I. INTRODUCTION

For the past few years, the AdS/CFT duality [1,2], which

provides an exact correspondence between a gravity theory

in (dþ 1)-dimensional AdS space and a strongly coupled

gauge theory living on d dimensions, has been extensively

applied in order to describe various phenomena in usual

condensed matter physics, including high-Tc superconduc-

tivity. The holographic description of s-wave superconduc-
tors basically consists of a charged planar AdS black hole

minimally coupled to a complex scalar field. The formation

of scalar hair below the critical temperature (Tc) triggers the

superconductivity in the boundary field theory through the

mechanism of spontaneous Uð1Þ symmetry breaking [3–7].

Besides the conventional framework of Maxwell elec-

trodynamics, there is always a provision for incorporating

nonlinear electrodynamics in various aspects of gravity

theories. The theory of nonlinear electrodynamics was

originally introduced in an attempt to remove certain dis-

crepancies, such as the infinite self-energy of electrons for

the Maxwell theory [8]. Recently, gravity theories with

nonlinear electrodynamics have found profound applica-

tions due to its emergence in the low-energy limit of the

heterotic string theory [9–11]. Gravity theories that include

such nonlinear effects have been investigated extensively

for the past several years [12–25]. As a result, several

intriguing features regarding the properties of black holes,

such as regular black hole solutions [12,13], validation of

the zeroth and the first laws of black hole mechanics [16],

different asymptotic behaviors of black hole solutions [20],

etc., have emerged.

Among the various theories with nonlinear electrodynam-

ics, it is the Born-Infeld (BI) theory that has attained re-

newed attention due to its several remarkable features.

Perhaps the most interesting and elegant regime for the

application of the BI electrodynamics is the string theory.

The BI theory effectively describes the low-energy behavior

of the D branes, which are basically (nonperturbative) soli-

tonic objects in string theory [26,27]. The nonlinear theories

have entered into the gauge theories via the ‘‘braneworld’’

scenario [28]. String theory requires the inclusion of gravity

theories in order to describe some of its fundamental prop-

erties. In this regard it is indeed essential to connect non-

linear electrodynamics with gravity. One of the interesting

properties of the BI theory is that the electric field is regular

for a pointlike particle. The regular BI theory with finite

energy gives the nonsingular solutions of the field equations.

In fact, the BI electrodynamics is the only nonlinear electro-

dynamic theory with a sensible weak field limit [26,29].

Another intriguing feature of the BI theory is that it remains

invariant under electromagnetic duality [28,30–34]. All the

above mentioned features of the BI theory provide a moti-

vation to study Einstein gravity as well as higher-curvature

gravity theories coupled to BI electrodynamics [13,35–42].

BI electrodynamics coupled to anti–de Sitter (AdS) gravity

exhibits close resemblance to the Reissner-Nordström-AdS

blck holes [43,44]. Also, it is reassuring to note that in

(3þ 1) dimensions, the black hole solution with BI electro-

dynamics possesses a (lower) bound to the extremality of

the BI-AdS black holes [23–25,45].

For the past couple of years, gravity theories with both

linear (usual Maxwell case) as well as nonlinear electro-

dynamics have been extensively studied in the context of

*rabin@bose.res.in
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AdS/CFT superconductivity [46–70]. Surprisingly, it is

observed that fewer efforts have been made to study non-

linear theories [62–70]. The analyses that have been per-

formed so far are mostly based on numerical techniques. A

systematic analytic approach is therefore lacking in this

particular context.

Inspired by all the above mentioned facts, in the present

paper we aim to study the onset of holographic s-wave
condensate in the framework of BI electrodynamics. In

fact, this issue has been investigated earlier in Ref. [62] using

numerical techniques. In the present paper, we aim to inves-

tigate the onset of s-wave condensate based on an analytic

technique which is popularly known as the Sturm-Liouville

(SL) eigenvalue problem [47]. In the present analysis we

adopt the boundary condition hOi ¼ cþ and hOi¼c ¼0,

which implies that the conformal dimension of the conden-

sation operator O in the boundary field theory is #þ ¼ 2

[62]. This boundary condition seems to be quite nontrivial as

far as analytic computation is concerned. This is simply due

to the fact that the perturbative technique required to solve

the differential equations does not work in a straightforward

manner. However, we overcome this problem by adopting

certain mathematical tricks and have successfully computed

the onset of s-wave condensate. From our analysis, we have

been (analytically) able to show that the critical temperature

(Tc) indeed gets affected due to the presence of higher-

derivative corrections to the usual Maxwell action. In fact,

it is found to be decreasing with the increase in the value of

the BI coupling parameter (b), which suggests the onset of

harder condensation. It is also noteworthy that our analytic

results are in good agreement with the existing numerical

results [62]. It should be noted that all our calculations have

been carried out in the probe limit [7,48].1

The organization of the paper is as follows: In Sec. II, the

basic setup for holographic superconductors in the

Schwarzchild-AdS background is given. In Sec. III, we

perform the analytic calculations involved to determine the

critical temperature (Tc) of the condensate. Section IV

deals with the computation of the order parameter (hOi)
for the condensation. The last section is devoted to the

conclusion.

II. BASIC SETUP

To begin with, we consider a fixed planar Schwarzschild-

AdS black hole background, which reads [46]2

ds2 ¼  fðrÞdt2 þ fðrÞ 1dr2 þ r2ðdx2 þ dy2Þ; (1)

where the metric function is

fðrÞ ¼
 

r2  r3þ
r

!

; (2)

rþ being the horizon radius of the black hole. The Hawking

temperature of the black hole may be written as

T ¼ 1

4-

 
@fðrÞ
@r

!

r¼rþ

¼ 3rþ
4-

: (3)

In the presence of an electric field and a complex scalar

field (c ðrÞ), we may write the corresponding Lagrangian

density as

L ¼ LBI  jr0c  iqA0c j2  m2jc j2; (4)

where LBI is the Born-Infeld Lagrangian density given by

Ref. [62],

LBI ¼
1

b

0

@1 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bF

2

s 1

A: (5)

Here F ) F06F06 and b is the Born-Infeld parameter. It is

to be noted that in our approach, we shall investigate the

effect of the higher-derivative corrections to the gauge

field in the leading order; i.e., we shall keep only terms

linear in b. Thus, the results of this paper are valid only in

the leading order of b.
The equation of motion for the electromagnetic field

tensor F06 can be written as

@0

0

@

ffiffiffiffiffiffiffi g
p

F06

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bF
2

q

1

A ¼ J 6: (6)

Considering the ansatz [46] c ¼ c ðrÞ and A0 ¼
ð8ðrÞ; 0; 0; 0Þ, the equations of motion for the scalar

field c ðrÞ and the electric scalar potential 8ðrÞ may be

written as3

c
00ðrÞ þ

 
f0

f
þ 2

r

!

c
0ðrÞ þ

 
82ðrÞ
f2

þ 2

f

!

c ðrÞ ¼ 0; (7)

800ðrÞ þ 2

r
ð1 b802ðrÞÞ80ðrÞ  2c 2ðrÞ

f
ð1 b802ðrÞÞ32 ¼ 0:

(8)

The above set of equations [Eqs. (7) and (8)] are written

in the radial coordinate r. In order to carry out an analytic

computation, we define a new variable z ¼ rþ
r . In this new

variable, Eqs. (7) and (8) become

1In the probe limit, gravity and matter decouple and the
backreaction of the matter fields (the charged gauge field and
the charged massive scalar field) is suppressed in the neutral
black hole background. This is done by rescaling the matter
fields by the charge (q) of the scalar field and then taking the
limit q! 1. This simplifies the problem without hindering
the physical properties of the system.

2Without loss of generality, we can choose l ¼ 1, which
follows from the scaling properties of the equation of motion.
Also, the gravitational constant is set to be unity (G ¼ 1). 3In our analysis, we take m2 ¼  2.
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zc 00ðzÞ  2þ z3

1 z3
c
0ðzÞ þ

)

z
82ðzÞ

r2þð1 z3Þ2

þ 2

zð1 z3Þ

*

c ðzÞ ¼ 0; (9)

800ðzÞþ2bz3

r2þ
803ðzÞ 2c 2ðzÞ

z2ð1 z3Þ

 

1 bz4

r2þ
802ðzÞ

!3

2

8ðzÞ¼ 0:

(10)

Since the above equations [Eqs. (9) and (10)] are

second-order differential equations, in order to solve

them we must know the corresponding boundary condi-

tions. The regularity of 8 and c at the horizon requires

8ðz ¼ 1Þ ¼ 0 and c ðz ¼ 1Þ ¼ 3

2
c
0ðz ¼ 1Þ.

On the other hand, at spatial infinity, 8 and c can be

approximated as

8ðzÞ . 0 <

r
¼ 0 <

rþ
z (11)

and

c ðzÞ . c
ðþÞ

r#þ
þ c

ð Þ

r# 
¼ c

ðþÞ

r
#þ
þ

z#þ þ c
ð Þ

r
# 
þ

z# ; (12)

where #/ ¼ 3

2
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þm2

q

is the conformal dimension of

the condensation operator O in the boundary field theory,

and 0 and < are interpreted as the chemical potential and

charge density of the dual field theory. Since we have

considered m2 < 0 (which is above the Breitenlohner-

Freedman bound [71,72]), we are left with the two different

condensation operators of different dimensionality corre-

sponding to the choice of quantization of the scalar field

c in the bulk. In the present context, either c ðþÞ or c ð Þ

will act as a condensation operator while the other will act

as a source. In the present work, we choose c ðþÞ ¼ hOi and
c
ð Þ as its source. Since we want the condensation to take

place in the absence of any source, we set c ð Þ ¼ 0. At this

point, it must be stressed that for the present choice of c ,

the analytic calculations of various entities near the critical

point get notoriously difficult, and special care should be

taken in order to carry out a perturbative analysis. In the

present work, we focus to evade the above mentioned

difficulties by adopting certain mathematical techniques.

Our analysis indeed shows a good agreement with the

numerical results existing in the literature [62].

III. s-WAVE CONDENSATE WITH NONTRIVIAL

BOUNDARY CONDITION

With the above setup in place, we now move on to

investigate the relation between the critical temperature

of condensation and the charge density.

At the critical temperature Tc the scalar field c vanishes,

so Eq. (10) becomes

800ðzÞ þ 2bz3

r2þðcÞ
803ðzÞ ¼ 0: (13)

The solution for this equation in the interval ½z; 11
reads [64]

8ðzÞ ¼ >rþðcÞ?ðzÞ; (14)

where

?ðzÞ ¼
Z 1

z

d~z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b>2~z4
p : (15)

We shall perform a perturbative expansion of b>2 on the

rhs of Eq. (15) and retain only the terms that are linear

in b such that b>2 ¼ b>2
0
þOðb2Þ, where >2

0
is the

value of >2 for b ¼ 0. Now, for our particular choice of

c
ðiÞ (i ¼ þ,  ), we have >2

0
. 17:3 [47]. Recalling that

the existing values of b in the literature are b ¼ 0:1, 0.2, 0.3
[62], we observe that b>2

0
> 1. Consequently, the binomial

expansion of the denominator in Eq. (15) has to done

carefully. The integration appearing in Eq. (15) is done

for two ranges of values of z, one for z 2 +< 1 and the

other for + 2 z 2 1, where + is such that b>2
0
z4jz¼+ ¼ 1.

At this stage, it is to be noted that b>2
0
z4 < 1 for z <+,

whereas on the other hand b>2
0
z4 > 1 for z >+.

For the first case (z 2 +< 1),

?ðzÞ ¼ ?1ðzÞ ¼
Z +

z

d~z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b>2
0
~z4

q þ
Z 1

+

d~z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b>2
0
~z4

q

.
Z +

z

 

1 b>2
0
~z4

2

!

þ 1
ffiffiffi

b
p

>0

Z 1

+

 
1

~z2
 1

2b>2
0
~z6

!

¼
)
9

5
+ zþ z5

10+4
 +2 þ+6

10

*

: (16)

Similarly, in the range + 2 z 2 1, we have

?ðzÞ ¼ ?2ðzÞ ¼
Z 1

z

d~z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b>2
0
~z4

q

. 1
ffiffiffi

b
p

>0

Z 1

z

 
1

~z2
 1

2b>2
0
~z6

!

¼ +2

z5

)

z4ð1 zÞ þ+4

10
ðz5  1Þ

*

: (17)

From Eq. (17), one may note that the boundary condition

8ð1Þ ¼ 0 is indeed satisfied [?2ð1Þ ¼ 0].

We may now express c ðzÞ near the boundary as

c ðzÞ ¼ hOi
ffiffiffi

2
p

r2þ
z2F ðzÞ (18)

with the condition F ð0Þ ¼ 1 and F 0ð0Þ ¼ 0.

HOLOGRAPHIC s-WAVE CONDENSATE WITH . . . PHYSICAL REVIEW D 87, 104001 (2013)

104001-3



Using Eq. (18), we may write Eq. (9) as

F 00ðzÞ  ð5z
4  2zÞ

z2ð1 z3ÞF
0ðzÞ  4z3

z2ð1 z3ÞF ðzÞ

þ >2
?2ðzÞ
ð1 z3Þ2 F ðzÞ ¼ 0: (19)

This equation can be put in the Sturm-Liouville form as

½pðzÞF 0ðzÞ10 þ qðzÞF ðzÞ þ >2gðzÞF ðzÞ ¼ 0 (20)

with the following identifications:

pðzÞ ¼ z2ð1 z3Þ; qðzÞ ¼  4z3;

gðzÞ ¼ z2

ð1 z3Þ?
2ðzÞ ¼ CðzÞ?2ðzÞ; (21)

where CðzÞ ¼ z2

ð1 z3Þ .

Using Eq. (21), we may write the eigenvalue >2 as

>2 ¼
R
1
0
fpðzÞ½F 0ðzÞ12 qðzÞ½F ðzÞ12gdz

R
1
0
fgðzÞ½F ðzÞ12gdz

¼
R
1
0
fpðzÞ½F 0ðzÞ12 qðzÞ½F ðzÞ12gdz

R
+
0
fCðzÞ?2

1
ðzÞ½F ðzÞ12gdzþR

1

+
fCðzÞ?2

2
ðzÞ½F ðzÞ12gdz :

(22)

We now choose the trial function F ðzÞ as [47]4

F ðzÞ ¼ 1 Dz2; (23)

which satisfies the conditions F ð0Þ ¼ 1 and F 0ð0Þ ¼ 0.

This form of the trial function is also compatible with the

boundary behavior of the scalar field c ðzÞ [Eq. (12)].
Let us now determine the eigenvalues for different val-

ues of the parameter b.
For b ¼ 0:1, we obtain

>2 ¼ 300:769

þ 2:27395D 5:19713

0:0206043þ ð0:00265985D 0:0119935ÞD ;

(24)

which has a minima for D . 0:653219. Therefore, from
Eq. (22) we obtain

>2 . 33:8298: (25)

The value of >2 obtained from the perturbative calcu-

lation justifies our approximation for computing the inte-

gral in Eq. (15) up to order b and neglecting terms of order

b2 and higher, since a term of order b2 can be estimated to

be smaller than a term of order b.

Using Eq. (25), the critical temperature for condensation

(Tc) in terms of the charge density (<) can be obtained as

Tc ¼
3rþðcÞ
4-

¼ E
ffiffiffiffi
<
p . 0:099

ffiffiffiffi
<
p

; (26)

where E ¼ 3

4-
ffiffiffi
>
p is the coefficient of Tc. The value thus

obtained analytically is indeed in very good agreement with

the numerical result: Tc ¼ 0:10072
ffiffiffiffi
<
p

[62]. Similarly,

for the other values of the Born-Infeld parameter (b), we
obtain the corresponding perturbative values for the coeffi-

cients of Tc which are presented in Table I below.

Before concluding this section, we would like to empha-

size the subtlety of the analytic method adapted here. We

employ a perturbative technique to compute the integral in

Eq. (15) up to order b. This approximation is valid since we

have investigated the effect of the higher-derivative cor-

rections up to the leading order in the nonlinear parameter

(b). However, due to the nature of the integrand of Eq. (15),
we had to be careful in separating the integral into two

regions in order to perform a binomial expansion of the

integrand.

IV. ORDER PARAMETER FOR CONDENSATION

In this section, we aim to calculate the order parameter

hOi for the s-wave condensate in the boundary field theory.
In order to do so, we need to consider the behavior of the

gauge field 8 near the critical temperature Tc. Substituting

Eq. (18) into Eq. (10), we may find

800ðzÞ þ 2bz3

r2þ
803ðzÞ

¼ F 2ðzÞz2hOi2
r4þð1 z3Þ

 

1 3bz4802ðzÞ
2r2þ

!

8ðzÞ þOðb2Þ: (27)

It is to be noted that in the subsequent analysis only

terms up to linear order in b have been considered.

As a next step, we expand 8ðzÞ perturbatively in the

small parameter hOi2=r4þ as follows:

8ðzÞ
rþ

¼ 80ðzÞ
rþ

þ hOi
2

r4þ
CðzÞ þ higher order terms; (28)

where 80 is the solution of Eq. (13). Here CðzÞ is some

arbitrary function which satisfies the boundary condition

Cð1Þ ¼ C0ð1Þ ¼ 0: (29)

TABLE I. A comparison between analytic and numerical val-

ues for the coefficient (E) of Tc corresponding to different values

of b.

Values of b Enumerical ESL

0.1 0.10072 0.099

0.2 0.08566 0.093

0.3 0.07292 0.089

4The functions F ðzÞ and ?ðzÞ [Eq. (15)] do not appear in the
numerical analysis, since in the numerical method Eqs. (9) and
(13) are solved directly.
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Substituting Eq. (28) and Eq. (14), we may write Eq. (27) in terms of CðzÞ as

C00ðzÞ þ 6b>2z3?02ðzÞC0ðzÞ ¼ >
F 2ðzÞz2?ðzÞ
ð1 z3Þ

 

1 3b>2z4?02ðzÞ
2

!

: (30)

Multiplying both sides of Eq. (30) by e3b>
2z4?02ðzÞ=2 and considering terms up to order b, we obtain5

d

dz
ðe3b>2z4?02ðzÞ=2C0ðzÞÞ ¼ e3b>

2z4?02ðzÞ=2>
F 2ðzÞz2?ðzÞ
ð1 z3Þ

 

1 3b>2z4?02ðzÞ
2

!

¼ >
F 2ðzÞz2?ðzÞ
ð1 z3Þ : (31)

Using the boundary condition [Eq. (29)] and integrating Eq. (31) in the interval ½0; 11, we finally obtain

C0ð0Þ ¼  >ðA1 þA2Þ; (32)

where

A1 ¼
Z +

0

F 2ðzÞz2?1ðzÞ
ð1 z3Þ for 0 2 z <+

¼ 1

12600+4

.

 70
ffiffiffi

3
p

-ð 1 10+4 þ Dð 2þ+4ð10Dþ 18ð2þ DÞ+ 10ð2þ DÞ+2 þ ð2þ DÞ+6ÞÞÞ

þ+ð126+ð 5þ 98+3Þ þ 30Dð84þ+3ð21þ 2+3ð244þ 21+ð 10þ+4ÞÞÞÞ
 35D2+2ð12þ+3ð474þ+ð 360þ+2ð94þ 9+ð 10þ 4+þ+4ÞÞÞÞÞÞ  420 log ð1 +Þ
þ 210 log ð1þ+þ+2Þ þ 210ð2

ffiffiffi

3
p
ð 1 10+4 þ Dð 2þ+4ð10Dþ 18ð2þ DÞ+ 10ð2þ DÞ+2

þ ð2þ DÞ+6ÞÞÞtan 1
 
1þ 2+

ffiffiffi

3
p

!

 ð 2D 10ð1þ D2Þ+4 þ 18ðD 2ÞD+5  10ðD 2ÞD+6

þ ðD 2ÞD+10Þð2 log ð1 +Þ  log ð1þ+þ+2ÞÞ  2ðD2 þ 20D+4 þ+5ð18 10+þ+5ÞÞ log ð1 +3ÞÞ
/

(33)

and

A2 ¼
Z 1

+

F 2ðzÞz2?2ðzÞ
ð1 z3Þ for +< z 2 1

¼ +2

360

.

4
ffiffiffi

3
p

-ð 10ð1þ Dð4þ DÞÞ þ ð 1þ 2Dð1þ DÞÞ+4Þ þ 12
ffiffiffi

3
p
ð10þ 10Dð4þ DÞ

þ+4  2Dð1þ DÞ+4Þtan 1
 
1þ 2+

ffiffiffi

3
p

!

þ 3ð 12Dð 10þ+ð20 10+þ+5 þ+3ð 1þ log 3ÞÞÞ

 6ð+2 þ+4ð 1þ log 3ÞÞ þ D2ð110þ+ð 120þ+2ð40þ 3+ð 15þ 4+þ+4ÞÞÞ  60 log 3Þ

þ 60 log 3 24D+4 log+þ 6ð 10þ+4 þ 2Dð5Dþ+4ÞÞ log ð1þ+þ+2ÞÞ
/

; (34)

where ?1ðzÞ and ?2ðzÞ were identified earlier [Eqs. (16) and (17)].

Now, from Eqs. (11) and (28), we may write

0

rþ
 <

r2þ
z ¼ 80ðzÞ

rþ
þ hOi

2

r4þ
CðzÞ ¼ >?ðzÞ þ hOi

2

r4þ

.

Cð0Þ þ zC0ð0Þ þ z2

2!
C00ð0Þ þ 5 5 5

/

: (35)

It is to be noted that while writing the rhs of Eq. (35), we have made a Taylor expansion of CðzÞ around z ¼ 0.

Comparing the coefficients of z from both sides of Eq. (35), we obtain

5The detailed derivation of this equation is given in the Appendix.
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<

r2þ
¼ > hOi

2

r4þ
C0ð0Þ: (36)

By substituting Eq. (32), we may write Eq. (36) in the

following form:

<

r2þ
¼ >

.

1þ hOi
2

r4þ
ðA1 þA2Þ

/

: (37)

Substituting > ¼ <=r2þðcÞ [cf. Eq. (14)] into Eq. (37), we

finally obtain the expression for the order parameter hOi
near the critical temperature (Tc) as

hOi ¼ GT2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 T

Tc

s

; (38)

where the coefficient G is given by

G ¼ 16
ffiffiffi

2
p

-2

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA1 þA2Þ
p : (39)

In the following table (Table II), we have provided both

analytic and numerical [62] values for the coefficient G
corresponding to different values of the Born-Infeld

parameter (b).
Here (from Table II), one can note that both the values

that are obtained through different approaches are in the

same order. The difference that is caused is mainly due to

the perturbative technique itself, where we have dropped

higher-order terms in the coupling parameter (b). Similar

features have also been found earlier [51]. However, the

trend is unique; i.e., G increases as we increase the value of

coupling b (see also Fig. 1). Indeed, it would be interesting

to carry out the analysis taking into account higher-order

terms in the coupling b, which is expected to reduce the

disparity between the analytic and numerical results.

V. CONCLUSIONS

In this paper, we have considered a holographic model

of a superconductor based on fundamental principles of

AdS/CFT duality. Among several models of holographic

superconductors in the AdS black hole background, we

have taken into account a model in which a nonlinear

Born-Infeld Lagrangian is included in the matter action.

The main purpose for considering the BI theory is that it

corresponds to the higher-derivative corrections of the

gauge fields in the usual Abelian theory that effectively

describes the low-energy behavior of the string theory.

In this sense, it may be considered as the generalized

version of the Abelian model. These corrections must

have nontrivial influences on the physical properties of

the system.

The aim of the present article is to study the effects of

these higher-derivative corrections on the holographic

s-wave condensate analytically. In this paper, we have

been able to extend the so-called Sturm-Liouville (SL)

method for this nonlinear model. This method was first

introduced in Ref. [47] in the context of usual Maxwell

theory. From our analysis it is indeed evident that extend-

ing such a method for the nonlinear model creates diffi-

culties in the analysis. However, we have been able to

construct an analytic technique based on this SL method

in order to analyze the properties of this holographic

superconductor subjected to a nontrivial boundary condi-

tion. On top of it, our approach reveals the fact that the

solutions of the field equations are highly nontrivial and

are not even exactly solvable. The analytic method pre-

sented here provides a smooth platform to deal with this

difficulty.

TABLE II. Values of G [Eq. (39)] for different values of b.

Values of b Values of D (A1 þA2) GSL Gnumerical

0.1 0.653219 0.0442811 117.919 207.360

0.2 0.656050 0.0388491 125.893 302.760

0.3 0.660111 0.0352282 132.205 432.640

FIG. 1 (color online). Plot of hOi=T2
c with T=Tc for different

values of b.

FIG. 2 (color online). The deviation Plot of the coefficient of

Tc (E) with the BI parameter (b).
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The novelty of the present paper is that we have ana-

lytically studied the effects of the BI coupling parameter

b on the critical temperature and the condensation opera-

tor near the critical point. It is observed that the above

physical quantities are indeed affected due to the higher-

derivative corrections. The results thus obtained from

our calculations can be summarized qualitatively as

follows:

(i) The critical temperature (Tc) increases as we de-

crease the value of b, indicating the onset of a harder
condensation (Table I).

(ii) The value of the order parameter increases with the

increase of b (Table II).

The point that must be stressed at this stage of discussion

is that the analytic approach is always preferable to the

numerical approach. This is due to the fact that the nu-

merical results become less reliable when the temperature

T approaches zero [5,47]. In this temperature limit, the

numerical solutions to the nonlinear field equations be-

come much more difficult, and therefore the determination

of the nature of the condensate becomes practically very

arduous unless analytic methods are taken into account.

Therefore, the analytic method is always more reliable

while performing computations as T ! 0.

From Fig. 2 one may note that the results that are

obtained using the SL method are not exactly identical to

those obtained by numerical techniques. The deviation of

the analytic values from the numerical ones (Tables I and

II) is not unusual [51], considering the difference in the two

approaches (analytic and numerical). Contrary to the nu-

merical approach, in the analytic method we have taken

into account only the leading-order terms in the coupling b.
Certainly, there is a great amount of approximation in-

volved which is absent in the numerical technique.

The difference between the two approaches in fact mo-

tivates us to enquire into a more general analytic approach,

in which the above disparity may be reduced and the

agreement eventually becomes more close. Apart from

this, there are other possibilities which we must emphasize

in order to obtain enriched physics from the theoretical

point of view. These may be stated as follows:

(i) It would be very interesting to repeat the above

analysis in the presence of backreaction.

(ii) With the mathematical technique presented here,

one can perform the analysis in higher dimensions.

(iii) Apart from the BI electrodynamics, one can also

analyze the problem considering any other non-

linear theory (power Maxwell action, Hoffman-

Infeld theory, logarithmic electrodynamics, etc.)

existing in the literature.

As a final remark, we would like to mention that the

numerical results obtained in the existing literature have

always been substantiated by analytic results. However,

one may confirm the validity of the analytic results ob-

tained by the Sturm-Liouville (SL) method (without

referring to the numerical results) by comparing them

with the results obtained from an alternative analytic tech-

nique which is known as the matching method [48].
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APPENDIX: DERIVATION OF EQUATION (31)

The lhs of Eq. (31) may be written as

d

dz
ðe3b>2z4?02ðzÞ=2C0ðzÞÞ

¼ e3b>
2z4?02ðzÞ=2½C00ðzÞ þ 6b>2z3?02ðzÞC0ðzÞ

þ 3b>2z4?0ðzÞ?00ðzÞC0ðzÞ1: (A1)

The last term on the rhs of Eq. (A1) can be rewritten as

3b>2z4?0ðzÞ?00ðzÞC0ðzÞ

¼ 3b>2z4?0ðzÞ
 
800

0
ðzÞ

>rþ

!

C0ðzÞ

¼  6b
2>z7?0ðzÞ
r3þ

803
0
ðzÞC0ðzÞ

¼  6b2>4z7?04ðzÞC0ðzÞ . 0; (A2)

where we have used Eq. (13).

Therefore, Eq. (A1) becomes

d

dz
ðe3b>2z4?02ðzÞ=2C0ðzÞÞ

¼ e3b>
2z4?02ðzÞ=2½C00ðzÞ þ 6b>2z3?02ðzÞC0ðzÞ1: (A3)

The rhs of Eq. (31) may be written as

e3b>
2z4?02ðzÞ=2>F

2ðzÞz2?ðzÞ
ð1 z3Þ

 

1 3b>2z4?02ðzÞ
2

!

.
 

1þ3b>2z4?02ðzÞ
2

!
>F 2ðzÞz2?ðzÞ
ð1 z3Þ

 

1 3b>2z4?02ðzÞ
2

!

.>F 2ðzÞz2?ðzÞ
ð1 z3Þ : (A4)

Combining Eqs. (A3) and (A4), we obtain the desired

form of Eq. (31).
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In this paper we have studied the onset of holographic s-wave

condensate in the (4 + 1) dimensional planar Gauss–Bonnet-AdS

black hole background with several non-linear corrections to the

gauge field. In the probe limit, performing explicit analytic com-

putations, with and without magnetic field, we found that these

higher order corrections indeed affect various quantities charac-

terizing the holographic superconductors. Also, performing a com-

parative study of the two non-linear electrodynamics it has been

shown that the exponential electrodynamics has stronger effects

on the formation of the scalar hair. We observe that our results

agree well with those obtained numerically (Zhao et al., 2013).
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1. Introduction and motivations

The AdS/CFT correspondence [1,2] has proven to be useful in describing several aspects of strongly
coupled field theories from their weakly coupled dual gravity theories which lie in one higher
dimension.1 Over the past several years this correspondence has been extensively used to explore
certain field theoretic phenomena where conventional perturbation methods fail to give consistent
results [7].
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Among many sectors where this correspondence has been applied successfully, strongly interact-
ing condensed matter theory has been central to the discussion where conventional perturbation
techniques appear to be unfaithful. Using this holographic conjecture a holographic model of high
Tc superconductors has been proposed [8,9]. Further study of these phenomenological models reveal
many of their interesting features which resemble that of the conventional superconductors [10].

Gravity theories in higher dimensions2 (greater than four) have earned repeated attentions in the
past several decadeswith the advent of string theory. The primarymotivation comes from the fact that
the consistent description of string theory requires the inclusion of higher dimensional space–time.
Certain aspects of string theory are well described by associating gravity theories with it. The effect of
string theory on gravity may be studied by considering a low-energy effective action which describes
classical gravity [14]. This effective action must contain higher curvature terms and are needed to be
ghost free [15]. The Lovelock action is found to be consistent with these criteria [16].

Along with the conventional Maxwell electrodynamic theory non-linear electrodynamic theories
(NED), which correspond to the higher derivative corrections to the Abelian gauge fields, have also
become interesting topics of research for the past several decades. The primary motivation for
introducing non-linear electrodynamic theory was to remove divergences in the self-energy of point-
like charged particles [17]. However, they have earned renewed attention over past several years since
these theories naturally arise in the low-energy limit of the heterotic string theory [18–20].

Besides the conventional Born–Infeld non-linear electrodynamics (BINE) [17], two new types of
NEDs have been proposed recently, namely the exponential non-linear electrodynamics (ENE) and
the logarithmic non-linear electrodynamics (LNE), in the context of static charged asymptotic black
holes [21,22]. In fact, the matter actions with ENE and LNE yield the higher derivative corrections to
the usual Maxwell action. On the other hand these NEDs possess many unique properties which are
quite different from theMaxwell electrodynamics. For example, while solutions with LNE completely
remove divergences in the electric fields at r = 0, these divergences still remain in the solutions with
ENE. But these divergences aremuchweaker than theusualMaxwell case [21,22]. Also, comparedwith
Maxwell theory, solutions with LNE and ENE have different temperatures and electric potentials [21,
22]. Another novel property of these non-linear theories is that, their asymptotic black hole solutions
are the same as that of a Reissner–Nordström black hole [22]. On top of that, these types of non-linear
theories retain some interesting properties (alike BINE) such as, absence of shockwaves, birefringence
etc. [21,22]. One further advantage of studying ENE and LNE over the Maxwell theory is that they
provide an enriched platform to investigate generalized versions of NEDs in a systematic manner so
as to reveal some general features of the effects of higher derivative corrections to the gauge fields in
the theory concerned.

At this point of discussion it must be stressed that while gravity theories with NEDs give rise
to many interesting gravity solutions which in many respects are different from the solutions
with usual Maxwell electrodynamics [23–36], these are also widely discussed in the context of
gauge/string duality, specifically in the holographic study of condensed matter phenomena with
holographic superconductors as specific examples. Holographic superconductors with non-linear
electrodynamics [37–52] have been investigated alongside those with Maxwell electrodynamics
[10]. These studies show that the non-linearity in the theory indeed modifies the behaviours of
the holographic condensates in non-trivial manners which cannot be observed in the conventional
holographic superconductors with Maxwell electrodynamics. In other words the higher derivative
corrections to the Abelian gauge fields are manifested as effects on certain properties of the dual
holographic models. This observation motivates us to study models of holographic superconductors
with ENE and LNE and look for the modifications they make on certain properties of the models
compared to the Maxwell case. This also encourages us to make a comparative study between holo-
graphic models with different NEDs regarding their effects on the condensation formation. In this
regard consideration of holographic models with ENE and LNE is another motivation of the present
paper.

2 For good reviews on gravity theories in higher dimensions see [11–13].
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Along with the study of holographic superconductors in the framework of conventional Einstein
gravity several attempts have been made in order to study these objects in the presence of higher
curvature corrections to the Einstein gravity in higher dimensions [39,42,45,51–59]. These curvature
corrections also modify some of the properties of the holographic superconductors, such as (i) the
observed constancy of the ratio of the frequency gap of the real part of the conductivity to the critical
temperature of the superconductor [60] breaks down for Gauss–Bonnet superconductors [53,55–57],
(ii) in certain generalized cases of different values of the Gauss–Bonnet correction changes the order
of the phase transition [57], (iii) the ratio of the shear viscosity to the entropy density (η/s ≥ 1/4π) in
CFT dual to the Einstein–Gauss–Bonnet gravity changes significantly with the Gauss–Bonnet coupling
[61,62].

Apart from these, the effects of external magnetic fields on the holographic superconductors with
or without these nontrivial non-linear corrections have been studied. These studies reveal several
interesting properties of these superconductors which resemble certain properties of conventional
superconductors, such as the Meissner effect, vortex and droplet solutions etc. [43,47,63–70].

It must be emphasized that holographic superconductors with several NEDs (BINE, ENE, LNE) has
been studied in Ref. [49] in the planar Schwarzschild-AdS black hole background without taking into
account higher curvature corrections to the Einstein gravity. Also, in Ref. [52] a holographicmodelwith
BINE in the Gauss–Bonnett gravity has been considered. Surprisingly most of the computations have
been performed using numerical methods. Therefore, it would be nice to perform analytic analysis
of holographic superconductor models with non-linear electrodynamic fields (ENE and LNE) in the
Gauss–Bonnett black hole background.

Considering all the above mentioned facts, in this paper we have made an extensive analytic
investigation of the holographic model of superconductors mentioned at the end of the previous
paragraph in the presence of an external magnetic field. The primary motivations of our study may
be summarized as follows: (i) investigating the effects of higher curvature as well as higher derivative
corrections on the properties of holographic superconductors, (ii) exploring the effects of an external
magnetic field on the holographic condensates and determining how the non-linear corrections
modify the critical value of themagnetic field, (iii) making a comparison between theMaxwell theory
and the non-linear electrodynamic theories regarding their effects on the formation of the scalar
condensates, (iv) comparing the non-linear electrodynamic theories in an attempt to see which one
has stronger effects on the formation of the scalar condensates.

The present paper has been organized as follows. In Section 2, the basic setup for s-wave holo-
graphic superconductor with two different non-linear electrodynamics (ENE and LNE) in the planar
(4+ 1)-dimensional Gauss–Bonnet AdS black hole background is given. In Section 3, we have calcu-
lated various properties of the s-wave holographic superconductor with exponential electrodynam-
ics (ENE) which include the critical temperatures for condensation and the expectation values of the
condensation operator in the absence of external magnetic field. In Section 4, we have discussed the
effects of an external staticmagnetic field on this holographic superconductor and calculated the criti-
cal magnetic field for condensation.We have drawn our conclusions and discussed some of the future
scopes in Section 5. Finally, in the Appendix we have given the expressions of the aforementioned
quantities for the s-wave holographic superconductor with logarithmic electrodynamics (LNE) and
derived a necessary mathematical relation.

2. Basic set up

The effective action for the higher curvature Lovelock gravity in an arbitrary dimension d may be
written as [16],

Sgrav =
1

16πGd

∫

ddx
√
−g

[d/2]
∑

i=0

αiLi (1)

where, αi is an arbitrary constant, Li is the Euler density of a 2i dimensional manifold and Gd is the
Gravitational constant in d-dimensions. In our subsequent analysis we shall consider the coordinate
system where Gd = h̄ = kB = c = 1.
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In this paper we shall be mainly concerned with the (4+ 1)-dimensional Einstein–Gauss–Bonnet
gravity in anti-de Sitter (AdS) space. Thus, the effective action (1) can be written as,

Sgrav =
1

16π

∫

d5x
√
−g

(

α0L0 + α1L1 + α2L2

)

=
1

16π

∫

d5x
√
−g

(

−2Λ+R + αL2

)

(2)

where Λ is the cosmological constant given by −6/l2, l being the AdS length, α2 ≡ α is the
Gauss–Bonnet coefficient, L1 = R is the usual Einstein–Hilbert Lagrangian and L2 = Rµνγ δR

µνγ δ −
4RµνR

µν +R
2 is the Gauss–Bonnet Lagrangian.

The Ricci flat solution for the action (2) is given by [53,71,72]

ds2 = −f (r)dt2 + f (r)−1dr2 + r2(dx2 + dy2 + dz2) (3)

where the metric function is3 [53,71,72],

f (r) =
r2

2a

(

1−

√

1− 4a

(

1−
M

r4

)

)

. (4)

In (4),M is the mass of the black hole which may be expressed in terms of the horizon radius (r+)
as, r+ = M1/4 [42,53,56]; the parameter a is related to the coefficient α as, a = 2α. It is to be noted
that, in order to avoid naked singularity we must have a ≤ 1/4 [42,53], whereas, considering the
causality of dual field theory on the boundary the lower bound of a is found to be a ≥ −7/36 [73].
Also, in the asymptotic infinity (r →∞)we may write the metric function (4) as,

f (r) ∼
r2

2a

(

1−
√
1− 4a

)

. (5)

Thus, the effective AdS radius can be defined as [53],

L2eff =
2a

1−
√
1− 4a

. (6)

Note that, in the limit a→ 1/4, L2eff = 0.5. This limit is known as the Chern–Simons limit [74].
The Hawking temperature of the black holemay be obtained by analytic continuation of themetric

at the horizon (r+) and is given by [42,53,56],

T =
r+

π
. (7)

In this paper we shall study the s-wave holographic superconductor in the framework of various
non-linear electrodynamics in the (4+ 1)-dimensional planar Gauss–Bonnet AdS (GBAdS) black hole
background. For this purpose, we shall consider a matter Lagrangian which consists of a charged U(1)
gauge field, Aµ, and a charged massive complex scalar field, ψ . Thus, the matter action for the theory
may be written as [8,9],

Smatter =
∫

d5x
√
−g

(

L(F)− |∇µψ − iAµψ |2 −m2ψ2
)

(8)

where m is the mass of the scalar field. Moreover, we shall carry out all the calculations in the probe
limit [10]. In this limit, gravity and matter decouple and the backreaction of the matter fields (scalar
field and gauge field) can be suppressed in the neutral AdS black hole background. This is achieved
by rescaling the matter action (8) by the charge, q, of the scalar field and then considering the limit
q → ∞. The generosity of this approach is that we can simplify the problems without hindering

3 Without loss of generality, we can choose l = 1, which follows from the scaling properties of the equation of motion.
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the physical properties of the system. The term L(F) in (8) corresponds to the Lagrangian for the non-
linear electrodynamic field. In different non-linear theories the Lagrangian L(F) can take the following
forms [21,49]:

L(F) =











1

4b

(

e−bFµνFµν − 1

)

, for ENE

−2

b
ln

(

1+
1

8
bFµνFµν

)

, for LNE.

(9)

Note that in the limit b→ 0, we recover the usual Maxwell term: L(F)|b→0 = − 1
4
FµνFµν .

In order to solve the equations of motion resulting from the variation of the action (8) w.r.to the
gauge and scalar fields we shall choose the following ansatz for the two fields concerned [43]:

Aµ =
(

φ(r), 0, 0, 0, 0

)

, (10a)

ψ = ψ(r). (10b)

It is to be noted that, the above choices of the fields are justified since it is seen that under the trans-
formations Aµ → Aµ + ∂µθ and ψ → ψeiθ the above equations of motion remain invariant. This
demands that the phase of ψ remains constant and we may take ψ to be real without any loss of
generality.

With the change of coordinates z = r+
r
, where the horizon (r = r+) is at z = 1 and the boundary

(r →∞) is at z = 0, the equations of motion for the scalar field (ψ(z)) and the U(1) gauge field (Aµ)
may be obtained as [53,56],

ψ ′′(z)+
(

f ′(z)

f (z)
−

1

z

)

ψ ′(z)+
φ2(z)ψ(z)r2+

z4f 2(z)
−

m2ψ(z)r2+
z4f (z)

= 0, (11)

(

1+
4bz4φ′2(z)

r2+

)

φ′′(z)−
1

z
φ′(z)+

8bz3

r2+
φ′3(z)

−
2ψ2(z)φ(z)r2+

f (z)z4
e−2bz4φ′2(z)/r2+ = 0, for ENE (12)

(

1+
bz4φ′2(z)

4r2+

)

φ′′(z)−
φ′(z)

z
+

5bz3

4r2+
φ′3(z)

−
2ψ2(z)φ(z)r2+

f (z)z4

(

1−
bz4φ′2(z)

4r2+

)2

= 0, for LNE. (13)

In order to solve the above set of equations we shall choose the following boundary conditions:

(i) At the horizon (z = 1) one must have, form2 = −3,4

φ(1) = 0, ψ ′(1) =
3

4
ψ(1) (14)

(ii) In the asymptotic AdS region (z → 0) the solutions for the scalar potential and the scalar field
may be expressed as,

φ(z) = µ−
ρ

r2+
z2, (15a)

ψ(z) = D−z
λ− + D+z

λ+ (15b)

4 For the rest of the analysis of our paper we choosem2 = −3. This ensures that we are above the Breitenlohner–Freedman

bound [75,76].
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where λ± = 2±
√

4− 3L2eff is the conformal dimension of the condensation operatorOi (i = 1, 2)

in the boundary field theory, µ and ρ are identified as the chemical potential and the charge
density of the dual field theory, respectively. It is interesting to note that, sincewehave considered
m2 < 0 in our analysis, we are left with the two different condensation operators of different
dimensionality corresponding to the choice of quantization of the scalar field ψ in the bulk. We
chooseD− = 0. Then, according to the AdS/CFT correspondenceD+ ≡ 〈O2〉, the expectation value
of the condensation operator in the dual field theory.

3. s-wave condensate and its critical behaviour without magnetic field

In this section we shall analytically derive the critical temperature for condensation, Tc , for the
holographic s-wave condensate with two types of non-linear electrodynamics mentioned in the pre-
vious section. As a next step,we shall determine the normalized condensation operator and the critical
exponent associated with the condensation values in the presence of these non-linear theories in the
background of (4 + 1)-dimensional Gauss–Bonnet AdS black hole. In this way we would be able to
demonstrate the effects of the Gauss–Bonnet coupling coefficient (a) as well as non-linear parameter
(b) on these condensates.

In order to carry out our analysiswe have adopted awell known analytic techniquewhich is known
as the matching method [53]. In this method, we first determine the leading order solutions of the
equations of motion (11), (12), (13) near the horizon (1 ≥ z > zm) and at the asymptotic infinity
(zm > z ≥ 0) and then match these solutions smoothly at the intermediate point, zm.

5It is to be
noted that the matching method helps us to determine the values of the critical temperature as well
as of condensation operator only approximately, in the leading order of the non-linear parameter,
b. Moreover, this method provides us a much better understanding of the effects the Gauss–Bonnet
coefficient (a) as far as analytic computation is concerned [53].

In this section we shall perform the analysis for the holographic s-wave superconductor with
exponential electrodynamics only. Since, the analysis for the holographic superconductor with
logarithmic electrodynamics closely resemblances to that of the previous one, we shall only present
the results corresponding to this model in Appendix A.1.

Let us first consider the solutions of the gauge field,φ(z), and the scalar field,ψ(z), near the horizon
(z = 1). We Taylor expand both φ(z) and ψ(z) near the horizon as [53],

φ(z) = φ(1)− φ′(1)(1− z)+
1

2
φ′′(1)(1− z)2 + · · · (16)

ψ(z) = ψ(1)− ψ ′(1)(1− z)+
1

2
ψ ′′(1)(1− z)2 + · · · (17)

It is to be noted that, in (16) and (17), we have considered φ′(1) < 0 and ψ(1) > 0 in order to
make φ(z) and ψ(z) positive. This can be done without any loss of generality.

Near the horizon, z = 1, we may write from (11)

ψ ′′(1) =
[

1

z
ψ ′(z)

]

z=1

−
[

f ′(z)ψ ′(z)

f (z)

]

z=1

−
[

φ2(z)ψ(z)r2+
z4f 2(z)

]

z=1

−
[

3ψ(z)r+
2

z4f (z)

]

z=1

. (18)

5 In this paperwe pursue our analytic investigation in the same spirit as in Refs. [47,53] andmatch the leading order solutions

near the horizon and the boundary at the intermediate point zm = 0.5. It may be stressed that the qualitative features of the

analytical approximation does not change for other values of zm (0 < zm ≤ 1) and differences in the numerical values are

not too large [53]. Therefore throughout our analysis we shall choose zm = 0.5 while obtaining numerical values and plotting

various quantities. In fact, as mentioned in Ref. [77], this choice of the matching point roughly corresponds to the geometrical

mean of the horizon radius and the AdS scale. Interestingly, with this choice of zm our results are fairly consistent with Ref. [53]

for b = 0.
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Using the L’Hôpital’s rule and the values f ′(1) = −4r2+, f
′′(1) = 4r+

2 + 32ar+
2, we may express

(18) in the following form:

ψ ′′(1) = −
5

4
ψ ′(1)+ 8aψ ′(1)−

φ′2(1)ψ(1)

16r+2
. (19)

Finally, using the boundary condition (14), the Taylor expansion (17) can be rewritten as,

ψ(z) =
1

4
ψ(1)+

3

4
ψ(1)z + (1− z)2

[

−
15

64
+

3a

2
−
φ′2(1)

64r+2

]

ψ(1). (20)

Near the horizon, z = 1, from (12) we may write

φ′′(1) =
1

(

1+ 4b

r2+
φ′2(1)

)

[

φ′(1)−
8b

r+2
φ
′3(1)−

ψ2(1)φ′(1)

2
e−2bφ′2(z)/r2+

]

. (21)

In obtaining (21) we have considered that the metric function, f (z), can also be Taylor expanded
as in (16), (17).

Substituting (21) in (16) and using (14) we finally obtain,

φ(z) = −φ′(1)(1− z)+
1

2
(1− z)2

[

1−
8b

r+2
φ′2(1)−

ψ2(1)

2
e−2bφ′2(z)/r2+

]

×
φ′(1)

(

1+ 4b

r2+
φ′2(1)

) . (22)

Now, using the method prescribed by the matching technique [53], we match the solutions (20),
(22), (15a) and (15b) at the intermediate point z = zm. It is very much evident that the matching of
the two asymptotic solutions smoothly at z = zm requires the following four conditions:

µ−
ρz2m

r2+
= β(1− zm)−

β

2
(1− zm)

2

[

1− 8bβ̃2

1+ 4bβ̃2
−
α2

2

e−2bβ̃2

1+ 4bβ̃2

]

(23)

−
2ρzm

r2+
= −β + β(1− zm)

[

1− 8bβ̃2

1+ 4bβ̃2
−
α2

2

e−2bβ̃2

1+ 4bβ̃2

]

(24)

D+z
λ+
m =

α

4
+

3αzm

4
+ α(1− zm)

2

[

−15

64
+

3a

2
−
β̃2

64

]

(25)

λ+D+z
λ+
m =

3αzm

4
− 2αzm(1− zm)

[

−15

64
+

3a

2
−
β̃2

64

]

(26)

where we have set ψ(1) = α,−φ′(1) = β (α, β > 0), β̃ = β

r+
and D− = 0 [cf. (15b)].

From (24), using (7), we obtain,

α2 =
2zm

(1− zm)
e2bβ̃

2

(

1+
4bβ̃2(3− 2zm)

zm

)

(

Tc

T

)3 (

1−
T 3

T 3
c

)

. (27)

Since, in our entire analysis we intend to keep terms which are only linear in the non-linear
parameter, b, (27) can be approximated as,

α2 ≈
2zm

(1− zm)

(

1+
6bβ̃2(2− zm)

zm

)

(

Tc

T

)3 (

1−
T 3

T 3
c

)

. (28)
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Here the quantity Tc may be identified as the critical temperature for condensation and is given by,

Tc =
[

2ρ

β̃π3

(

1−
12bβ̃2(1− zm)

zm

)]
1
3

. (29)

Now from (25) and (26) we obtain,

D+ =
(3z2m + 5zm)

4 (λ+ + (2− λ+)zm)

(

1

zm

)λ+

α, (30)

β̃ = 8

[

−15

64
+

3a

2
−

(3z2m + 5zm)(1+ λ+)
4 (λ+ + (2− λ+)zm)

(

1− 4zm + 3z2m
) +

(1+ 6zm)

4
(

1− 4zm + 3z2m
)

]
1
2

. (31)

Finally, using (7), (28) and (30), near the critical temperature, T ∼ Tc , wemaywrite the expectation
value, 〈O2〉, of the condensation operator in the following form6:

〈O2〉
1
λ+

Tc
=
(

π

zm

)[

(3z2m + 5zm)

4 (λ+ + (2− λ+)zm)

]

1
λ+

×
[

6zm

(1− zm)

(

1+
6bβ̃2(2− zm)

zm

)

(

1−
T

Tc

)

]
1

2λ+

. (32)

In (32) we have normalized 〈O2〉 by the critical temperature, Tc , to obtain a dimensionless quantity
[53]. In the similar fashion we can also calculate the critical temperature, Tc , and condensation
operator, 〈O2〉, for the holographic superconductors with LNE. The corresponding expressions for the
above mentioned quantities are given in Appendix A.1.

In the next section we shall be mainly concerned with the effects of magnetic field on this s-wave
holographic superconductor with the two different types of non-linear electrodynamics mentioned
earlier. But, before that we would like to make some comments on the results obtained so far. These
may be put as follows:

(i) From (29) (and (A.1)) it is evident that in order to have a meaningful notion of the critical tem-
perature, Tc , there must have an upper bound to the non-linear coupling parameter, b. The upper
bounds corresponding to two non-linear theories are given below:

b ≤















zm(λ+ + 2zm − λ+zm)
12(1+ 96aλ+ − 6(32a− 13)(λ+ − 1)zm + 3(32a− 5)(λ+ − 2)z2m)

, for ENE

2zm(λ+ + 2zm − λ+zm)
3(1+ 96aλ+)− 18(32a− 13)(λ+ − 1)zm + 9(32a− 5)(λ+ − 2)z2m

, for LNE.

(33)

Note that, with our choice zm = 0.5 and for fixed values of a, this upper bound is smaller for ENE
compared to LNE.

(ii) The critical temperature, Tc , decreases as we increase the values of the non-linear parameter, b
(Table 1). This feature is general for the two types of holographic superconductors considered in
this paper. It must be remarked that, without any non-linear corrections (b = 0) the critical tem-
perature is larger than the above two cases. For example, Tc = 0.1907ρ1/3 for a = 0.2, zm = 0.5.
This suggests the onset of a harder condensation. Another nontrivial and perhaps the most inter-
esting feature of our present analysis is that, for a particular value of the non-linear parameter,

6 Here we have used the relation (1− t3) = (1− t)(1+ t + t2) for any arbitrary variable t .
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Table 1

Numerical values of coefficients of Tc for different values of the parameters a, b.

b a = −0.19 a = −0.10

ENE LNE ENE LNE

0.0002 0.2113 0.2174 0.2005 0.2081

0.0004 0.2039 0.2165 0.1910 0.2070

0.0006 0.1958 0.2157 0.1805 0.2060

0.0008 0.1871 0.2148 0.1686 0.2049

0.0010 0.1775 0.2139 0.1547 0.2039

0.0012 0.1667 0.2130 0.1377 0.2028

0.0014 0.1542 0.2122 0.1149 0.2016

0.0016 0.1394 0.2113 0.0753 0.2005

0.0018 0.1204 0.2104 – –

0.0020 0.0923 0.2094 – –

b a = 0.10 a = 0.25

ENE LNE ENE LNE

0.0002 0.1834 0.1943 0.1725 0.1861

0.0003 0.1766 0.1936 0.1636 0.1852

0.0004 0.1692 0.1928 0.1537 0.1843

0.0005 0.1610 0.1920 0.1421 0.1834

0.0006 0.1520 0.1913 0.1285 0.1824

0.0007 0.1417 0.1906 0.1110 0.1815

0.0008 0.1296 0.1898 0.0852 0.1805

0.0009 0.1148 0.1890 – –

0.0010 0.0946 0.1882 – –

b, the value of the critical temperature, Tc , for the holographic condensate with ENE is smaller
than that with LNE (Table 1) showing stronger effects of the former on the condensation. It is also
noteworthy that similar feature was obtained numerically by the authors of [49] in the planar
Schwarzschild-AdS black hole background.

(iii) The condensation gap for the holographic condensate with non-linear electrodynamics is more
than that with Maxwell electrodynamics (Fig. 1). On top of that, holographic superconductors
with ENE exhibit larger gap compared with that with LNE. This suggests that the formation of the
scalar hair is more difficult for the holographic condensate with ENE [49].

(iv) The Gauss–Bonnet parameter (a) also has important consequences in the formation of the holo-
graphic condensate. From Table 1 it is clear that as we increase the value of a the critical tem-
perature for condensation decreases. This means that the increase of a makes the formation of
scalar hair difficult. This indeed shows that both a and b has the same kind of influences on the
formation of the hair. However, from Fig. 2 we observe that Tc decreasesmore rapidlywith b than
with a. This clearly suggests that the Born–Infeld parameter (b)modifies the critical temperature
more significantly than the Gauss–Bonnet parameter (a).

(v) The expectation value of the condensation operator, 〈O2〉, vanishes at the critical point T = Tc
and the condensation occurs below the critical temperature, Tc (see the right panel of Fig. 1).
Moreover, form (32) (and (A.2)) we observe that 〈O2〉 ∝ (1 − T/Tc)

1/2 which shows the mean
field behaviour of the holographic condensates and signifies that there is indeed a second order
phase transition (critical exponent 1/2). This also admires the consistency of our analysis.

4. Effects of external magnetic field with non-linear corrections

In this section we intend to study the effect of an external magnetic field on the holographic
superconductors with the non-linear electrodynamics mentioned earlier. But before we present our
analysis, we would like to briefly mention the Meissner-like effect in the context of holographic
superconductors [63] which will be central to our discussion. It is observed that when immersed in
an external magnetic field, ordinary superconductors expel magnetic field lines thereby exhibiting
perfect diamagnetism when the temperature is lowered through Tc . This is the Meissner effect
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Fig. 1. Plots of critical temperature (Tc − ρ) and normalized condensation operator (〈O2〉
1
λ+ /Tc − T/Tc) for different

electrodynamic theories. The green, blue and red curves correspond to Maxwell, LNE and ENE, respectively. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

[78]. But for the holographic superconductors in the probe limit we neglect the backreaction of the
scalar field on the background geometry. As a result the superconductors are not able to repel the
background magnetic field. Instead the scalar condensates adjust themselves such that they only fill
a finite strip in the plane which reduces the total magnetic field passing through it. In other words,
the effect of the external magnetic field is such that it always tries to reduce the condensate away
making the condensation difficult to set in. Considering this apparent similaritywith the conventional
Meissner effect, this holographic phenomena is referred to asMeissner-like effect.

In order to study the effects of magnetic field on the holographic superconductors we add an
external static magnetic field in the bulk. According to the gauge/gravity duality, the asymptotic
value of the magnetic field in the bulk corresponds to a magnetic field in the boundary field theory,
i.e., B(x) = Fxy(x, z → 0) [63,65]. Considering the fact that, near the critical magnetic field, Bc , the
value of the condensate is small, we may consider the scalar field ψ as a perturbation near Bc . This
allows us to adopt the following ansatz for the gauge field and the scalar field [43,47,63,65]:

Aµ =
(

φ(z), 0, 0, Bx, 0

)

, (34a)

ψ = ψ(x, z). (34b)

With the help of (8), (34a) and (34b) we may write the equation of motion for the scalar field
ψ(x, z) as [43,47,52],
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Fig. 2. Left panel: Variation of Tc with a for different values of b (top for ENE, bottom for LNE); Right panel: Variation of Tc with

b for different values of a (top for ENE, bottom for LNE). We have chosen zm = 0.5 and ρ = 1.

ψ ′′(x, z)−
ψ ′(x, z)

z
+

f ′(z)

f (z)
ψ ′(x, z)+

r2+φ
2(z)ψ(x, z)

z4f 2(z)

+
1

z2f (z)

(

∂2xψ − B2x2ψ
)

+
3r2+ψ(x, z)

z4f (z)
= 0 (35)

In order to solve (35) we shall use the method of separation of variables [63,65]. Let us consider
the solution of the following form:

ψ(x, z) = X(x)R(z). (36)

As a next step, we shall substitute (36) into (35). This yields the following equation which is
separable in the two variables, x and z.

z2f (z)

[

R′′(z)

R(z)
+

R′(z)

R(z)

(

f ′(z)

f (z)
−

1

z

)

+
r2+φ

2(z)

z4f 2(z)
+

3r2+
z4f (z)

]

−
[

−
X ′′(x)

X(x)
+ B2x2

]

= 0. (37)

It is interesting to note that, the x dependent part of (37) is localized in one dimension. Moreover,
this is exactly solvable since itmaps the quantumharmonic oscillator (QHO). Thismay be identified as
the Schrödinger equation for the corresponding QHOwith a frequency determined by B [43,47,63,65],

− X ′′(x)+ B2x2X(x) = CnBX(x) (38)

where Cn = 2n+ 1 (n = integer). Since the most stable solution corresponds to n = 0 [43,47,63], the
z dependent part of (37) may be expressed as

R′′(z)+
(

f ′(z)

f (z)
−

1

z

)

R′(z)+
r2+φ

2(z)R(z)

z4f 2(z)
+

3r2+R(z)

z4f (z)
=

BR(z)

z2f (z)
. (39)
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Now at the horizon, z = 1, using (14) and (39), we may write the following equation:

R′(1) =
(

3

4
−

B

4r2+

)

R(1). (40)

On the other hand, at the asymptotic infinity, z → 0, the solution of (39) can be written as

R(z) = D−z
λ− + D+z

λ+ . (41)

It is to be noted that in our analysis we shall choose D− = 0 as was done in Section 3.

Near the horizon, z = 1, Taylor expansion of R(z) gives

R(z) = R(1)− R′(1)(1− z)+
1

2
R′′(1)(1− z)2 + · · · (42)

where we have considered R′(1) < 0 without loss of generality.

Now calculating R′′(1) from (39) and using (40) we may write from (42)

R(z) =
1

4
R(1)+

3z

4
R(1)+ (1− z)

B

4r2+
R(1)

+
1

2
(1− z)2

[

3a−
15

32
+ (1− 16a)

B

16r2+
+

B2

32r4+
−
φ′2(1)

32r2+

]

R(1) (43)

where in the intermediate step we have used the Leibniz rule [cf. (18)].

Finally, matching the solutions (41) and (43) at the intermediate point z = zm and performing
some simple algebraic steps as in Section 3 we arrive at the following equation in B:

B2 + 2Br2+

[

8 (λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)
+ (1− 16a)

]

+
[

(1+ 3zm)λ+ − 3zm

2(1− zm)(λ+ − λ+zm + 2zm)
+
(

3a−
15

32
−
φ′2(1)

32r2+

)]

32r4+ = 0. (44)

Eq. (44) is quadratic in B and its solution is found to be of the following form [52]:

B = r2+

[(

8 (λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)
+ (1− 16a)

)2

−
(

16 [(1+ 3zm)λ+ − 3zm]

(1− zm)(λ+ − λ+zm + 2zm)

+
(

96a− 15−
φ′2(1)

r2+

))]

1
2

− r2+

(

8 (λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)
+ (1− 16a)

)

. (45)

We are interested in determining the critical value of the magnetic field strength, Bc , above
which the superconducting phase disappears. In this regard, we would like to consider the case for
which B ∼ Bc . Interestingly, in this case the condensation becomes vanishingly small and we can
neglect terms that are quadratic in ψ . Thus, the equation of motion corresponding to the gauge field
(Eq. (12)), φ, may be written as

(

1+
4bz4φ′2(z)

r2+

)

φ′′(z)−
1

z
φ′(z)+

8bz3

r2+
φ′3(z) = 0. (46)

In order to solve the above equation we shall consider a perturbative solution of the following
form:

φ(z) = φ0(z)+
b

r2+
φ1(z)+ · · · (47)
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where φ0(z) is the solution of φ(z) for b = 0 and so on. After some algebraic calculations we may
write the solution of (47) as7

φ(z) =
ρ

r2+
(1− z2)

[

1+
b

r2+
−

2bρ2

r6+
(1+ z4)(1+ z2)

]

. (48)

At this point of discussion, it must be stressed that we have considered terms which are linear in
the non-linear parameter b.

At the asymptotic boundary of the AdS space, z = 0, the solution (48) can be approximated as

φ(z) ≈
ρ

r2+

[

1+
b

r2+
−

2bρ2

r6+

]

−
ρ

r2+

(

1+
b

r2+

)

z2. (49)

Now, comparing (49) with (15a) we may identify the chemical potential, µ, as

µ =
ρ

r2+

[

1+
b

r2+
−

2bρ2

r6+

]

. (50)

Near the horizon, z = 1, we may write from (46)

φ′′(1) = φ′(1)−
12b

r2+
φ′3(1)+ O(b2). (51)

Substituting (51) into (16) and using the boundary condition (14) we may write

φ(z) = −φ′(1)(1− z)+
1

2
(1− z)2

(

φ′(1)−
12b

r2+
φ′3(1)

)

. (52)

Matching the solutions (52) and (15a) at the intermediate point zm and using (50) we can find the
following relation:

(β − 2η)(2η3 − 6β3 − η) = 0 (53)

where we have set −φ′(1) = β and
ρ

r2+
= η. One of the solutions of this quartic equation can be

written as

β = 2η

which implies

φ′(1) = −
2ρ

r2+
. (54)

As a final step, substituting (54) into (45) and using (7) and (29) we obtain the critical value of the
magnetic field strength as

Bc

T 2
c

= π2

(

1+
12bβ̃2(1− zm)

C2zm

)[

β̃C −M

(

T

Tc

)3
]

. (55)

In a similarmannerwe candetermine the critical value ofmagnetic strength,Bc , for the holographic
superconductor with logarithmic electrodynamics. The expression for Bc in this model is given in
Appendix A.1.

In (55) the terms C and M can be identified as

C =
(

1−
A−M

2

β̃2
x6
)

1
2

7 See Appendix for the derivation.
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Fig. 3. Plots of Bc/T
2
c − T/Tc for different values of a and b.

M = 1− 16a+
8(λ+ − (λ+ − 1)zm)

(1− zm)(λ+ − λ+zm + 2zm)

where

A =
[

96a− 15+ 16

(

(1+ 3zm)λ+ − 3zm

(1− zm)(λ+ − λ+zm + 2zm)

)]

.

Here, we must mention that we have normalized Bc by the square of the critical temperature, Tc ,
such that the critical magnetic field strength, Bc , becomes dimensionless.

In Fig. 3 we have plotted (55) (and (A.3)) as a function of T/Tc . From these plots it is evident that
above the critical magnetic field (Bc) the superconductivity is completely destroyed which is also the
case for ordinary type II superconductors [78]. From the above analysis we can explain the effects
of the Gauss–Bonnet coupling parameter (a) and the non-linear parameter (b) on the holographic
condensates. First of all we note that, for fixed values of a the critical magnetic field (Bc) increases
with b. Secondly, the critical magnetic field corresponding to the Maxwell case (b = 0) is lower than
those for ENE and LNE. This indicates that the critical magnetic field strength is higher in presence
of the non-linear corrections than the usual Maxwell case. Moreover, this increment is larger for the
holographic condensate with ENE than that with LNE. Finally, if we vary a while keeping b constant
similar effects are observed, i.e. the critical field strength increases with the Gauss–Bonnet parameter
(a). From the preceding discussion we may infer that both the higher order corrections indeed
make the condensation harder to form. Moreover, between the two non-linear electrodynamics,
the exponential electrodynamics has stronger effects on the formation of the holographic s-wave
condensate namely, the formation of the scalar hair is more difficult for holographic superconductor
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with ENE. This can be explained by noting that the increase in the critical field strength (Bc) tries to
reduce the condensate away making the condensation difficult to set in [43,47,63].

5. Conclusions

In this paper, considering the probe limit, we have studied a holographic model of superconductor
in the higher curvature planar Gauss–Bonnet-AdS black hole background. We have also taken into
account two different types of non-linear electrodynamics (exponential and logarithmic non-linear
electrodynamics) in the matter Lagrangian which may be considered as higher derivative corrections
to the gauge fields in the usual Abelian gauge theory. In addition to that, we have made an analytic
investigation on the effects of an external magnetic field on these superconductors.

The primary motivations of the present paper is to study the effects of several non-linear correc-
tions to the gravity andmatter sectors of the action (that describes the holographic superconductivity)
on the holographic s-wave condensates both in presence as well as absence of an external magnetic
field. Along with this we aim tomake a comparative study among the usual Maxwell electrodynamics
and the two NEDs considered in the paper (ENE, LNE) regarding their effects on the formation of holo-
graphic condensates. Based on purely analytic methods we have successfully addressed these issues.
The main results of our analysis can be put as follows:

• Non-linear electrodynamics has stronger effects on the condensates than the usual Maxwell case.
The critical temperature for condensation (Tc)decreases aswe increase the values of the non-linear
parameter (b) as well as the Gauss–Bonnet coupling parameter (a) (Fig. 1, Table 1). Moreover,
b modifies the critical temperature more significantly than a (Fig. 2). On the other hand, the
normalized order parameter (〈O2〉1/λ+/Tc) increases with the increase of b and a (Fig. 1). This
implies that, in the presence of the higher order corrections the formation of the scalar hairs
become difficult.

• The variation of the order parameterwith temperature, 〈O2〉 ∝ (1−T/Tc)
1/2, exhibits amean-field

behaviour. Also, the value of the associated critical exponent is 1/2, which further ensures that the
holographic condensates indeed undergo a second order phase transition in going from normal to
superconducting phase.

• There exists a critical magnetic field Bc above which the superconductivity ceases to exist (Fig. 3).
This property is similar to that of ordinary type II superconductors [78]. Also, the critical magnetic
field strength (Bc) increases as we increase both b and a. The increasing magnetic field strength
tries to reduce the condensate away completely making the condensation difficult to form.

• From Figs. 1, 3 and Table 1 we further observe that for particular parameter values Tc is less in
holographic superconductor with ENE than that with LNE whereas, 〈O2〉1/λ+/Tc and Bc is more
in the previous one. These results suggest that the exponential electrodynamics exhibit stronger
effects than the logarithmic electrodynamics.

It is interesting to note that similar conclusions were drawn in Ref. [49] where numerical com-
putations were performed in this direction. Our analytic calculations provide further confirma-
tions regarding this issue. However, the novel feature of our present analysis is that we have been
able to study the effect of the higher curvature corrections which was not performed explicitly in
Ref. [49].

Although, we have been able to explore several issues regarding s-wave holographic superconduc-
tors with different non-linear corrections, there are several other nontrivial and important aspects
which can be explored in the future. These can be written in the following order:

(i) We have performed our entire analysis in the probe limit. It will be interesting to carry out the
analysis by considering the back-reaction on the metric.

(ii) We can further extend our analysis considering higher curvature gravity theories beyond Gauss–
Bonnet gravity. Also, the study of holographic p-wave and d-wave superconductors in presence
of these various higher order corrections may be taken into account.
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Appendix

A.1. Holographic condensate with LNE

The critical temperature for condensation:

Tc =
[

2ρ

β̃π3

(

1−
3bβ̃2(1− zm)

2zm

)]
1
3

. (A.1)

Normalized order parameter:

〈O2〉
1
λ+

Tc
=
(

π

zm

)[

(3z2m + 5zm)

4 (λ+ + (2− λ+)zm)

]

1
λ+

×
[

6zm

(1− zm)

(

1+
3bβ̃2(2− zm)

4zm

)

(

1−
T

Tc

)

]
1

2λ+

. (A.2)

Critical magnetic field strength:

Bc

T 2
c

= π2

(

1+
3bβ̃2(1− zm)

2C2zm

)[

β̃C −M

(

T

Tc

)3
]

. (A.3)

The quantities C, M and A are identified in Section 4.

A.2. Solution of gauge field (φ(z)) near Bc

The equation for the gauge field near Bc for the holographic superconductor with ENE is given by

(

1+
4bz4φ′2(z)

r2+

)

φ′′(z)−
1

z
φ′(z)+

8bz3

r2+
φ′3(z) = 0. (A.4)

Let us consider the following perturbative solution of (A.4):

φ(z) = φ0(z)+
b

r2+
φ1(z)+ · · · (A.5)

where φ0(z), φ1(z), · · · are independent solutions and the numbers in the suffices of φ(z) indicate
the corresponding order of the non-linear parameter (b).

Substituting (A.5) in (A.4) we obtain

[

φ′′0 (z)−
φ′0(z)

z

]

+
b

r2+

[

φ′′1 (z)−
φ′1(z)

z
+ 4z4φ′′0 (z)φ

′2
0 (z)+

8z3

r2+
φ′30 (z)

]

+ O(b2) = 0. (A.6)

Equating the coefficients of b0 and b1 from the l.h.s of (A.6) to zero we may write

b0 : φ′′0 (z)−
φ′0(z)

z
= 0 (A.7a)

b1 : φ′′1 (z)−
φ′1(z)

z
+ 4z4φ′′0 (z)φ

′2
0 (z)+

8z3

r2+
φ′30 (z) = 0. (A.7b)
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Now, using the boundary condition (15a) we may write the solution of (A.7a) as

φ0(z) =
ρ

r2+
(1− z2). (A.8)

Using (A.8) we may simplify (A.7b) as

φ′′1 (z)−
φ′1(z)

z
− 96z6

(

ρ

r2+

)3

= 0. (A.9)

As a next step, using the asymptotic boundary condition (15a), from (A.9) we obtain the solution
of φ1(z) as

φ1(z) =
2ρ3

r6+
(z8 − 1)−

ρ

r2+
(z2 − 1). (A.10)

Substituting (A.8) and (A.10) in (A.5) we finally obtain the solution of the gauge field as

φ(z) =
ρ

r2+
(1− z2)

[

1+
b

r2+
−

2bρ2

r6+
(1+ z4)(1+ z2)

]

. (A.11)

The solution of the gauge field for the holographic superconductor with LNE may be obtained by
similar procedure and is given below:

φ(z) =
ρ

r2+
(1− z2)

[

1+
b

r2+
−

bρ2

4r6+
(1+ z4)(1+ z2)

]

. (A.12)
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1. Introduction and motivations

The emergence of the AdS/CFT correspondence [1,2] has opened 
up new directions in dealing with the strongly correlated systems. 
Since its discovery, this duality has been extensively used in sev-
eral areas in physics such as, fluid/gravity correspondence, QCD, 
and many others [3–6]. In addition, its lucidity and wide range of 
applicability have led physicists to apply this correspondence in 
order to understand several strongly coupled phenomena of con-
densed matter physics [7–9]. But in many examples of condensed 
matter physics it is often observed that the behaviors of the sys-
tems are governed by Lifshitz-like fixed points. These fixed points are 
characterized by the anisotropic scaling symmetry

t → λzt, xi → λxi (i = 1,2, ...,d). (1)

The exponent z is called the “dynamical critical exponent” and it 
describes the degree of anisotropy between space and time [10]. 
These are non-Lorentz invariant points and hence the systems are 
non-relativistic in nature [11].

There have been several attempts to describe these systems 
holographically using the standard prescriptions of gauge/gravity 
duality. But due to the nonrelativistic nature of these systems the 
dual description has been modified and it provides a gravity dual 
for systems which are realized by nonrelativistic CFTs [12–15]. The 
gravity dual to Lifshitz fixed points is described by the Lifshitz 
metric [16]1:

E-mail addresses: arindam.lala@bose.res.in, arindam.physics1@gmail.com.
1 We shall set the radius of the AdS space to unity (L = 1) in our analysis.

ds2 = −r2zdt2 +
dr2

r2
+ r2dxidxi (2)

which respects the scale transformation equation (1) along with an 
additional scaling r → λ−1r. In the limit z = 1 it gives the AdSd+2

metric. On the other hand exact black hole solutions in the asymp-

totically Lifshitz space–time have been found [17–20].
Recently, the AdS/CFT duality has been used to understand di-

verse properties of high Tc superconductors [21–24]. The studies of 
these holographic models of superconductor have been extended 
by including several higher derivative corrections to the usual Ein-
stein gravity as well as in the Maxwell gauge sector (see Ref. [25]
and references therein). Along with this the response of the holo-
graphic superconductors in external magnetic fields has also been 
studied [25–38]. These studies show interesting vortex and droplet 
solutions for these models [29–32,34,37]. Very recently promis-

ing conclusions have been drawn regarding the effects of various 
corrections to the Einstein–Maxwell sector on the aforementioned 
solutions [39,40].

Over the past few years a series of works have been attempted 
to understand various properties of HS with Lifshitz scaling [11,
41–46]. Very recently the authors of Refs. [47,48] found out inter-
esting effects of anisotropy on the characterizing properties of HS 
with Lifshitz scaling as well as the effects of external magnetic 
fields on them. In spite of these attempts several other impor-

tant issues have been overlooked which we intend to study in 
the present paper. Thus the motivations of the present analysis 
may be put forward as follows: (i) It has been confirmed that 
the anisotropic scaling plays an important role in affecting the 
behavior of the holographic condensates [47,48]. Thus it would 

http://dx.doi.org/10.1016/j.physletb.2014.06.081
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be interesting to verify whether the vortex and/or droplet solu-
tions are affected by it; and (ii) It would be nontrivial to study 
the effects of anisotropy on the holographic condensates. Also, 
the response of the critical parameters of phase transition to this 
anisotropy can be studied.

The paper is organized as follows: In Section 2 we have devel-
oped the vortex lattice solution for the s-wave superconductors in 
a Lifshitz black hole background. In Section 3 we have obtained a 
holographic droplet solution for this superconductor in the Lifshitz 
soliton background. Finally, in Section 4 we have drawn conclu-
sions and discussed some of the future scopes.

2. Vortex solution

In this paper we shall construct a (2 + 1)-dimensional holo-
graphic superconductor with Lifshitz scaling (Eq. (1)). According to 
the gauge/gravity duality the gravitational dual to this model will 
be a (3 + 1)-dimensional Lifshitz space–time with the following 
action [15]:

S =
1

16πG

∫

d4x
√

−g

(

R − 2Λ −
1

2
∂µφ∂µφ −

1

4
ebφFµνF

µν

)

(3)

The background over which we intend to work is given by the 
following four dimensional Lifshitz black hole [17,47]:

ds2 = −
β2z

u2z
f (u)dt2 +

β2

u2

(

dx2 + dy2
)

+
du2

u2 f (u)
(4)

where we have chosen a coordinate u = 1
r
, such that the black 

hole horizon is at u = 1 and the boundary (r → ∞) is at u = 0, for 
mathematical simplicity. In Eq. (4)

f (u) = 1− uz+2, β(T ) =
(

4π T

z + 2

)
1
z

(5)

T being the Hawking temperature of the black hole.
The matter action for our model can be written as [23],2

SM =
∫

d4x
√

−g

(

−
1

4
Fµν F

µν − |Dµψ |2 −m2|ψ |2
)

(6)

where Fµν = ∂µAν − ∂ν Aµ , Dµ = ∂µ − i Aµ (µ, ν = t, x, y, u) and 
m is the mass of the scalar field ψ .

The equations of motion for the scalar field, ψ , and the gauge 
field, Aµ , can be obtained from Eq. (6) as

1
√

−g
∂µ

(√
−g∂µψ

)

− AµAµψ −m2ψ − i Aµ∂µψ

−
i

√
−g

∂µ

(√
−gAµψ

)

= 0, (7)

1
√

−g
∂µ

(√
−gFµν

)

= jν ≡ i
(

ψ∗∂νψ − ψ
(

∂νψ
)∗) + 2Aν |ψ |2.

(8)

In order to proceed further we shall consider the following 
ansatz for the gauge field [31]:

Aµ = (At, Ax, A y,0). (9)

2 We are working in the probe limit where gravity and matter decouple and the 
backreaction of the matter fields (the charged gauge field and the charged mas-

sive scalar field) on the background geometry can be neglected. This simplifies the 
problem without affecting the physical properties of the system.

We shall make further assumption that the solutions are sta-
tionary i.e. independent of time t . Using these we may write 
Eqs. (7), (8) as a set of coupled differential equations given by
(

u3−z∂u
f (u)

uz+1
∂u +

A2
t

β2z f (u)
−

m2

u2z

)

ψ =
−1

β2u2z−2

(

δi jDiD jψ
)

(10a)

f (u)β2∂u
(

uz−1(∂u At)
)

+ uz−11At =
2β2At

u3−z
ψ2, (10b)

where i, j = x, y and 1 = ∂2
x + ∂2

y is the Laplacian operator.
In order to solve the above set of equations we shall invoke the 

following boundary conditions [31]:
(i) At the asymptotic boundary (u → 0), the scalar field ψ be-

haves as [47]

ψ ∼ C1u
1− + C2u

1+ (11)

where 1± = (z+2)±
√

(z+2)2+4m2

2
and the coefficients C1, C2 are re-

lated to the expectation values of the operators dual to ψ with 
scaling dimension 1− and 1+ respectively. For our analysis we 
shall always choose the mass-squared, m2 , of the scalar field above 

its lower bound given by m2
LB = −(z+2)2

4
[47]. With this condition 

both the modes are normalizable and we may choose either one of 
them as the expectation value of the dual operator while the other 
behaves as the source. For the rest of our analysis we shall choose 
C1 = 0. Also, ψ is regular at the horizon, u = 1.

(ii) The asymptotic values of the gauge field Aµ give the chem-

ical potential (µ) and the external magnetic field (B) as

µ = At(Ex,u → 0), B = Fxy(Ex,u → 0) (12)

where Ex = x, y. The regularity of the gauge fields demand that 
At = 0 and Ai is regular everywhere on the horizon.

We shall further regard the external magnetic field as the only 
tuning parameter of our theory. Following this we shall assume 
µ and T of the boundary theory to be fixed and change only B. 
Considering our model of holographic superconductor analogous 
to ordinary type-II superconductor, there exists an upper critical 
magnetic field, Bc2 , below which the condensation occurs while 
above the Bc2 superconductivity breaks down.

As a next step, define the deviation parameter ε such that [31]

ε =
Bc2 − B

Bc2

, ε ¿ 1. (13)

Let us expand the scalar field ψ , the gauge field Aµ and the cur-
rent jµ as the following power series in ε:

ψ(Ex,u) = ε1/2ψ1(Ex,u) + ε3/2ψ2(Ex,u) + ..., (14a)

Aµ(Ex,u) = A
(0)
µ + εA

(1)
µ (Ex,u) + ..., (14b)

jµ(Ex,u) = ε j
(1)
µ (Ex,u) + ε2 j

(2)
µ (Ex,u) + ... (14c)

From Eqs. (13) and (14) we may infer the following interesting 
points:

(i) Since we have chosen ε ¿ 1, we are in fact very close to the 
critical point,

(ii) The positivity of the deviation parameter implies that Bc2

is always greater than the applied magnetic field B. This ensures 
that there is always a non-trivial scalar condensation in the theory 
that behaves as the order parameter.

Another important point that must be stressed is that, in 
Eq. (14b) A

(0)
µ is the solution to the Maxwell’s equation in the ab-

sence of scalar condensate (ψ = 0). For the rest of our analysis we 
shall choose the following ansatz:

A
(0)
µ =

(

A0
t (u),0, A0

y(x),0
)

. (15)
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Now matching the coefficients of ε0 on both sides of Eq. (10b)
we may obtain,

A0
t = µ

(

1− u2−z
)

, A0
x = 0, A0

y = Bc2x. (16)

On the other hand using Eqs. (14a), (16) and using the follow-

ing ansatz for ψ1(Ex, u) [31]

ψ1(Ex,u) = eipyφ(x,u; p) (17)

where p is a constant, we can write Eq. (10a) as,

(

u3−z∂u
f (u)

uz+1
∂u +

(A
(0)
t (u))2

β2z f (u)
−

m2

u2z

)

φ(x,u; p)

=
1

β2u2z−2

[

∂2
x + (p − Bc2x)

2
]

φ(x,u; p). (18)

We may solve Eq. (18) by using the method of separation of 
variables [31]. In order to do so we shall separate the variable 
φ(x, u; p) as follow:

φ(x,u; p) = αn(u)γn(x; p) (19)

with the separation constant λn (n = 0, 1, 2, ...).
Substituting Eq. (19) into Eq. (18) we may write the equations 

for αn(u) and γ (x; p) as

u2−2z f (u)α′′
n (u) −

[

(z + 1) f (u)

u2z−1
+ (z + 2)u3−z

]

α′
n(u)

−
m2

u2z
α(u) +

(A
(0)
t )2

β2z f (u)
α(u) =

λnBc2

β2u2z−2
αn(u), (20a)

(

∂2
X −

X2

4

)

γn(x; p) =
λn

2
γn(x; p). (20b)

where we have identified X =
√

2Bc2 (x −
p

Bc2
). Following Ref. [26]

we can write the solutions of Eq. (20b) in terms of Hermite func-
tions, Hn , with eigenvalue λn = 2n + 1 as

γn(x; p) = e−X2/4Hn(X). (21)

Note that we have considered λn to be an odd integer. Since the 
Hermite functions decay exponentially with increasing X , which is 
the natural physical choice, our consideration is well justified [26]. 
Moreover, λn = 1 corresponds to the only physical solution for our 
analysis. Thus we shall restrict ourselves to the n = 0 case. With 
this choice Eq. (21) can be written as

γ0(x; p) = e−X2/4 ≡ exp

[

−
Bc2

2

(

x−
p

Bc2

)2]

. (22)

From the above analysis it is clear that λn is independent of 
the constant p. Therefore, a linear combination of the solutions 
eipyα0(u)γ0(x; p) with different values of p is also a solution to 
the EoM for ψ1 . Thus, following this proposition, we obtain

ψ1(Ex,u) = α0(u)

∞
∑

l=−∞
cle

ipl yγ0(x; pl). (23)

At this point of discussion it is interesting to note that Eq. (23)
is very similar to the expression for the order parameter of the 
Ginzburg–Landau (G–L) theory of type-II superconductors in the 
presence of a magnetic field [49]

ψG−L =
∑

l

cle
ipl yexp

[

−
(x − xl)

2

2ξ2

]

(24)

where xl = kΦ0
2πBc2

, Φ0 being the flux quanta and ξ is the supercon-

ducting coherence length. Comparing Eq. (24) with Eq. (22) we may 
obtain the following relation between the critical magnetic field 
and the coherence length as

Bc2 ∝
1

ξ2
(25)

which is indeed in good agreement with the result of the G–L the-
ory [49].

We may obtain the vortex lattice solution by appropriately choos-
ing cl and pl . In order to do so we shall assume periodicity both 
in the x and y directions characterized by two arbitrary parame-

ters a1 and a2 . The periodicity in the y direction can be expressed 
as

pl =
2π l

a1ξ
, l ∈ Z. (26)

Using Eqs. (25), (26) we may rewrite Eq. (22) for different val-
ues of l as

γ (x, y) =
∞
∑

l=−∞
cl exp

(

2π ily

a1ξ

)

exp

[

−
1

2ξ2

(

x−
2π lξ

a1

)2]

(27)

where the coefficient cl can be chosen as

cl = exp

(

−iπa2l
2

a21

)

. (28)

As a next step, we rewrite Eq. (27) by using the elliptic theta 
function, ϑ3(v, τ ),3 as

ψ1(Ex,u) = α0(u)exp

(

−x2

2ξ2

)

ϑ3(v,τ ). (29)

where v and τ can be identified as

v =
y − ix

a1ξ
, τ =

2π i − a2

a21
. (30)

Following Refs. [34,40] and using the pseudo-periodicity of 
ϑ3(v, τ ) we see that the function σ (Ex) ≡ |exp(−x2

2ξ2 )ϑ3(v, τ )|2

represents a vortex lattice in which the fundamental region is 
spanned by the following two lattice vectors

Ev1 = a1ξ∂y, Ev2 =
2πξ

a1
∂x +

a2

a1
∂y . (31)

We may put forward the main results of this section as follows:

(i) From Eq. (29) it is observed that the vortex solution does not 
depend upon the dynamic exponent z. This suggests that, whether 
the boundary field theory is relativistic or non-relativistic, the vor-
tex structure remains the same. Although it is interesting to note 
that the exponent z may have non-trivial effects on the condensa-
tion of the scalar field as is evident from Eq. (20a).

(ii) Eq. (29) also suggests that the structure of the vortex lattice 
is indeed controlled by the superconducting coherence length, ξ . 
Moreover, the solution has a Gaussian profile along the x direction. 
As the coherence length decreases the lattice structure gradually 
dies out. This behavior is similar to that of ordinary type-II super-
conductors [49].

3 ϑ(v, τ ) =
∑∞

l=−∞ exp(2iπ vl + iπτ l2).
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3. Droplet solution

In this section we shall consider the holographic insulator/su-
perconductor phase transition in the asymptotically Lifshitz space–
time.4 Our primary goal will be to extract the droplet solution for 
the s-wave holographic Lifshitz superconductor. In order to per-
form our analysis we shall consider a planar Lifshitz soliton5 back-

ground in 5-dimensions which can be written as [47,50],

ds2 = −r2dt2 + r2
(

dx2 + dy2
)

+
dr2

r2 f (r)
+ r2z f (r)dχ2 (32)

where f (r) = (1 − 1
rz+3 ) and the spatial direction χ is compactified 

to a circle and has a periodicity χ = χ + π . The geometry looks 
like a cigar in the (r, χ) directions. However, it will be more con-
venient to work in polar coordinates, x = ρ sin θ , y = ρ cos θ [36,

37]. With this choice Eq. (32) can be written as,

ds2 = −r2dt2 + r2
(

dρ2 + ρ2dθ2
)

+
dr2

r2 f (r)
+ r2z f (r)dχ2. (33)

We shall consider Maxwell-scalar action in 5 dimensions as the 
matter action of our theory which is written as [23],6

SM =
∫

d5x
√

−g

(

−
1

4
Fµν F

µν − |Dµψ |2 −m2|ψ |2
)

. (34)

In the probe limit we shall choose the following ansatz for the 
gauge field close to the critical point of phase transition (µ ∼ µc , 
ψ ∼ 0)

A = µcdt +
1

2
Bρ2dθ (35)

where µ is the chemical potential and B is the constant external 
magnetic field related to the vector potential.

The equation of motion for the scalar field, ψ , can be derived 
by varying the action (34) w.r.t. ψ and is given by

∂2
r F (t, r) +

(

f ′(r)

f (r)
+

(z + 4)

r

)

∂r F (t, r) −
∂2
t F (t, r)

r4 f (r)

+
2iµc

r4 f (r)
∂t F (t, r) +

[

∂2
χ H(χ)

r2z+2 f 2(r)H(χ)
−

m2

r2 f (r)
−

B2ρ2

4r4 f (r)

+
µ2

c

r4 f (r)
+

∂ρ(ρ∂ρU (ρ))

r4 f (r)U (ρ)ρ

]

F (t, r) = 0 (36)

where we have used Eq. (35) and considered the following ansatz

ψ(t, r,χ ,ρ) = F (t, r)H(χ)U (ρ). (37)

Now, applying the method of separation of variables we finally 
obtain the following three equations:

1

ρ
∂ρ

(

ρ∂ρU (ρ)
)

−
1

4
B
2ρ2U (ρ) = −k2U (ρ), (38a)

∂2
χ H(χ) = −λ2H(χ), (38b)

4 The insulator/superconductor phase transition is realized in the CFT language as 
a phase transition in which a large enough U (1) chemical potential, µ, overcomes 
the mass gap related to the scalar field, ψ . This mechanism allows ψ to conden-
sate above a critical value, µc . In fact a soliton background, which includes an extra 
compactified spatial direction, precisely generates this mass gap resembling an in-
sulating phase.
5 The Lifshitz soliton solution is obtained by performing a double Wick rotation 

of the Lifshitz black hole solution [47,50].
6 We shall again work in the probe limit.

∂2
r F (t, r) +

(

f ′(r)

f (r)
+

(z + 4)

r

)

∂r F (t, r) −
∂2
t F (t, r)

r4 f (r)

+
2iµc

r4 f (r)
∂t F (t, r) +

1

r4 f (r)

[

µ2
c −m2r2 − k2

−
λ2

f (r)r2z−2

]

F (t, r) = 0, (38c)

where λ and k are some arbitrary constants.
Eq. (38b) has the solution of the form

H(χ) = exp(iλχ) (39)

which gives λ = 2n, n ∈ Z, owing to the periodicity of H(χ) men-

tioned earlier.
Eq. (38a) is similar to the equation of a harmonic oscillator with 

k2 = l|B|, l ∈ Z
+ . We shall expect that the lowest mode of excita-

tion (n = 0, l = 1) will be the first to condensate and will give the 
most stable solution after condensation [36,37].

At this point let us discuss one of the main results of this paper. 
From Eq. (38a) we observe that it has the following solution

U (ρ) = exp

(

−|B|ρ2

4

)

. (40)

This suggests that for any finite magnetic field, the holographic 
condensate will be confined to a finite circular region. Moreover, if 
we increase the magnetic field this region shrinks to its size and 
for a large value of the magnetic field this essentially becomes a 
point at the origin with a nonzero condensate. This is precisely the 
holographic realization of a superconducting droplet.

As a next step, we shall be interested in solving Eq. (38c)

in order to determine a relation between the critical parameters 
(µc and B) in this insulator/superconductor phase transition. In 
order to do so, we shall further define F (t, r) = e−iωt R(r). With 
this definition we may rewrite Eq. (38c) as,

R ′′(u) +
(

f ′(u)

f (u)
−

z + 2

u

)

R ′(u)

+
1

f (u)

(

µ2
c − B −

m2

u2

)

R(u) = 0 (41)

where u = 1
r

and we have put ω = 0 since we are interested in 
perturbations which are marginally stable [37]. Here ‘prime’ de-
notes derivative w.r.t. u.

We shall choose a trial function Λ(u) such that

R(u → 0) ∼ 〈O1+〉u1+Λ(u) (42)

where 1± = (z+3)±
√

(z+3)2+4m2

2
, m2

LB = −(z+3)2

4
[47] and Λ(0) = 1, 

Λ′(0) = 0. Note that we have identified C2 in Eq. (11) as the ex-
pectation value of the condensation operator, 〈O1+ 〉.

Substituting Eq. (42) into Eq. (41) we finally get,
(

P(u)Λ′(u)
)′ +Q(u)Λ′(u) + ΓR(u)Λ(u) = 0 (43)

where Γ = (µ2
c −B) and

P =
(

1− uz+3
)

u21+−z−2 (44a)

Q =
[

1+(1+ − 1)
(

1− uz+3
)

−m2

− 1+
(

z + 2+ uz+3
)]

u21+−z−4 (44b)

R = u21+−z−2. (44c)

Note that, Eq. (43) is indeed a standard Sturm–Liouville eigen-

value equation. Thus, we may write the eigenvalue, Γ , by using 
the following formula [51]
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Table 1

Variation of Γ for z = 1
2

(m2
LB = −3.0625).

m2 −3.0 −2.0 −1.0 1.0 2.0 3

Γ 2.41947 5.51156 7.59806 11.1513 12.7798 14.3487

Table 2

Variation of Γ for z = 3
2

(m2
LB = −5.06).

m2 −4.5 −3.5 −2.5 −1.5 1.5 2.5 3.5 4.5

Γ 4.96028 7.50645 9.59179 11.479 16.5666 18.1496 19.6951 21.2097

Table 3

Variation of Γ for z = 5
2

(m2
LB = −7.5625).

m2 −7.0 −5.0 −3.0 −1.0 1.0 3.0 5.0 7.0

Γ 5.61026 10.5782 14.4483 17.9369 21.2117 24.3448 27.3750 30.3261

Γ =
∫ 1
0 du(P(u)(Λ′(u))2 +Q(u)Λ2(u))

∫ 1
0 duP(u)Λ2(u)

= Γ
(

α, z,m2
)

(45)

where we have chosen Λ(u) = 1 − αu1+ . Thus we may argue 
that, unlike the case of usual holographic superconductors [37], 
the quantity Γ = µ2

c − B depends on the dynamic critical expo-
nent (z). Therefore we may conclude that the anisotropic scaling 
indeed manipulates the relation between the parameters of the 
phase transition. In Tables 1–3 below we have shown the non-
trivial dependence of Γ on z.

4. Conclusions and future scopes

In this paper we have focused our attention to the study of a 
holographic model of s-wave superconductor with Lifshitz scaling 
in the presence of external magnetic field by using the gauge/grav-
ity duality. Working in the probe limit we have constructed vortex 
and droplet solutions for our holographic model by considering a 
Lifshitz black hole and a Lifshitz soliton background, respectively. 
Unlike the AdS/CFT holographic superconductors there is a non-
trivial dynamic exponent in the theory which is responsible for an 
anisotropy between the temporal and the spatial dimensions of the 
space–time resulting certain noticeable changes of the properties 
of the superconductor [11,41–48]. Also, due to the non-relativistic 
nature of the filed theory, the model is governed by the AdS/NRCFT 
correspondence [12–15].

The primary motivation of the present study is to verify the 
possibility of vortex and droplet solutions, which are common to 
the usual holographic superconductors described by the AdS/CFT 
correspondence [29–32,34,37], for this class of holographic super-
conductors as well as to consider the effects of anisotropy on these 
solutions. Based on purely analytic methods we have been able to 
construct these solutions. Our analysis shows that, although, the 
anisotropy has no effects on the vortex lattice solutions, it may 
have a non-trivial effect on the formation of holographic conden-
sates. Also, a close comparison between our results and those of 
the Ginzburg–Landau theory reveals the fact that the upper critical 
magnetic field (Bc2 ) is inversely proportional to the square of the 
superconducting coherence length (ξ ). This allows us to speculate 
the behavior of Bc2 with temperature although this requires fur-
ther investigations which is expected to be explored in the future. 
On the other hand, based on the method of separation of vari-
ables, we have been able to model a holographic droplet solution 
by working in a Lifshitz soliton background and considering insu-
lator/superconductor phase transition. Our analysis reveals that a 
holographic droplet is indeed formed in the ρ − θ plane with a 
non-vanishing condensate. Also, this droplet grows in size until it 

captures the entire plane when the external magnetic field B → 0. 
Interestingly, it is observed that the anisotropy does not affect the 
droplet solution. On top of that, we have determined a relation be-
tween the critical parameters of the phase transition by using the 
Sturm–Liouville method [51]. Interestingly, this relation is solely 
controlled by the dynamic exponent (z) which in turn exhibits the 
effects of anisotropy on the condensate (cf. Eq. (45)).

Although we have performed detail analytic calculations re-
garding some subtle issues of holographic Lifshitz superconductors, 
there might have been even more interesting outcomes that need 
further explorations. Some of these can be listed as follows:

(i) It will be interesting to carry out an analysis to see whether 
p-wave as well as d-wave holographic Lifshitz superconductors 
form vortex and/or droplet solutions. In this regard the effects of 
anisotropy on these solutions may be studied.

(ii) It is observed that the holographic model of superconductor 
analyzed in this paper is quite similar to the real world high-Tc

superconductors. But, this is a phenomenological model where we 
have chosen the fields and their interactions by hand [24]. We have 
not provided any microscopic theory which drives our model of 
superconductivity. It is expected to have a microscopic theory by 
proper embedding of the model into the string theory.

(iii) Note that there are nontrivial dependencies of the equa-
tions of motion on the dynamic exponent z derived from the 
actions of our model. This encourages us to obtain the free en-
ergy and the R-current for our model and study the effect(s) of 
anisotropy on them. More specifically, it will be important to look 
for any corrections to the usual Ginzburg–Landau current due to the 
presence of anisotropy. In this regard we may also study the long-
wavelength limit of the results thus obtained.

Apart from the points mentioned above there are several other 
non-trivial issues, such as the study of the effects of dynamical 
magnetic fields as well as of backreaction7 [52,53] on the prop-
erties of the s-wave Lifshitz superconductor, the effects of various 
non-linear corrections in the gauge and/or gravity sector on this 
superconductor and the study of the holographic model consid-
ered here in higher dimensions, that we wish to illuminate in the 
future.
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